نتایج جستجو برای: multi label data
تعداد نتایج: 2803845 فیلتر نتایج به سال:
Kernel alignment measures the degree of similarity between two kernels. In this paper, inspired from kernel alignment, we propose a new Linear Discriminant Analysis (LDA) formulation, kernel alignment LDA (kaLDA). We first define two kernels, data kernel and class indicator kernel. The problem is to find a subspace to maximize the alignment between subspace-transformed data kernel and class ind...
The benefit of exploiting label dependence in multi-label classification is known to be closely dependent on the type of loss to be minimized. In this paper, we show that the subsets of labels that appear as irreducible factors in the factorization of the conditional distribution of the label set given the input features play a pivotal role for multi-label classification in the context of 0/1 l...
Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-...
Recently several methods were proposed for the improvement of multi-label classification performance by using constraints on labels. Such constraints are based on dependencies between classes often present in multi-label data and can be mined as association rules from training data. The rules are then applied in a post-processing step to correct the classifier predictions. Due to properties of ...
Multi-Instance Multi-Label learning (MIML) deals with data objects that are represented by a bag of instances and associated with a set of class labels simultaneously. Previous studies typically assume that for every training example, all positive labels are tagged whereas the untagged labels are all negative. In many real applications such as image annotation, however, the learning problem oft...
Standard multi-label learning methods assume fully labeled training data. This assumption however is impractical in many application domains where labels are difficult to collect and missing labels are prevalent. In this paper, we develop a novel conditional restricted Boltzmann machine model to address multi-label learning with incomplete labels. It uses a restricted Boltzmann machine to captu...
Automatic image annotation (AIA) refers to the association of words to whole images which is considered as a promising and effective approach to bridge the semantic gap between low-level visual features and high-level semantic concepts. In this paper, we formulate the task of image annotation as a multi-label multi class semantic image classification problem and propose a simple yet effective m...
Many real world problems require multi-label classification, in which each training instance is associated with a set of labels. There are many existing learning algorithms for multi-label classification; however, these algorithms assume implicit negativity, where missing labels in the training data are automatically assumed to be negative. Additionally, many of the existing algorithms do not h...
Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predic...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید