نتایج جستجو برای: n ary subhypergroup

تعداد نتایج: 978938  

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

Journal: :Computers & Mathematics with Applications 2010

Journal: :Analele Universitatii "Ovidius" Constanta - Seria Matematica 2014

Journal: :Czechoslovak Mathematical Journal 1996

Journal: :Sultan Qaboos University Journal for Science [SQUJS] 1997

Journal: :Transactions of the Association for Computational Linguistics 2017

Journal: :Symmetry 2021

Algebraic structures in which the property of commutativity is substituted by mediality are introduced. We consider (associative) graded algebras and instead almost (generalized or $\varepsilon$-commutativity) we introduce ("commutativity-to-mediality" ansatz). Higher twisted products "deforming" brackets (being medial analog Lie brackets) defined. Toyoda's theorem connects (universal) with abe...

Journal: :Discrete Dynamics in Nature and Society 2018

Journal: :RAIRO - Theoretical Informatics and Applications 2008

Journal: :Beiträge Zur Algebra Und Geometrie / Contributions To Algebra And Geometry 2021

Let $X$ be a nonempty set. Denote by $\mathcal{F}^n_k$ the class of associative operations $F\colon X^n\to X$ satisfying condition $F(x_1,\ldots,x_n)\in\{x_1,\ldots,x_n\}$ whenever at least $k$ elements $x_1,\ldots,x_n$ are equal to each other. The $\mathcal{F}^n_1$ said quasitrivial and those $\mathcal{F}^n_n$ idempotent. We show that $\mathcal{F}^n_1=\cdots =\mathcal{F}^n_{n-2}\subseteq\mathc...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید