نتایج جستجو برای: neural network algorithm pso
تعداد نتایج: 1463843 فیلتر نتایج به سال:
Training neural networks is a complex task that is important for supervised learning. A few metaheuristic optimization techniques have been applied to increase the effectiveness of the training process. The Cuckoo Search (CS) algorithm is a recently developed meta-heuristic optimization algorithm which is suitable for solving optimization problems. In this paper, Cuckoo search is implemented in...
As an NDT technology, Eddy current testing is widely used to identify the surface flaw of metal material. However, due to the complex relationship between the test results and the flaw’s shape, the identification is qualitative in most situations. In the paper, a neural network optimized by particle swarm optimization (PSO) is used to quantify the detection result tentatively of the fault on th...
Breast cancer is one of the major tumor related cause of death in women. Various artificial intelligence techniques have been used to improve the diagnoses procedures and to aid the physician’s efforts. In this paper we summarize our preliminary study to detect breast cancer using a Flexible Neural Tree (FNT), Neural Network (NN), Wavelet Neural Network (WNN) and their ensemble combination. For...
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the stud...
In this study we compare the performance of three evolutionary algorithms such as Genetic Algorithm (GA) Particle Swarm Optimization (PSO) and Ant-Colony Optimization (ACO) which are used to optimize the Artificial Neural Network (ANN). Optimization of Neural Networks improves speed of recall and may also improve the efficiency of training. Here we have used the Ant colony optimization, Particl...
A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular va...
the objective of this paper is to develop an artificial neural network (ann) model which can beused to predict temperature rise due to climate change in regional scale. in the present work data recorded overyears 1985-2008 have been used at training and testing steps for ann model. the multilayer perceptron(mlp) network architecture is used for this purpose. three applied optimization methods a...
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
The particle swarm optimization algorithm was showed to converge rapidly during the initial stages of a global search, but around global optimum, the search process will become very slow. On the contrary, the gradient descending method can achieve faster convergent speed around global optimum, and at the same time, the convergent accuracy can be higher. So in this paper, a hybrid algorithm comb...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید