نتایج جستجو برای: nonnegative matrix factorization
تعداد نتایج: 384517 فیلتر نتایج به سال:
Nonnegative Matrix Factorization (NMF) is a widely used technique in many applications such as face recognition, motion segmentation, etc. It approximates the nonnegative data in an original high dimensional space with a linear representation in a low dimensional space by using the product of two nonnegative matrices. In many applications data are often partially corrupted with large additive n...
We propose a two-step algorithm for the construction of a Hidden Markov Model (HMM) of assigned size, i.e. cardinality of the state space of the underlying Markov chain, whose n-dimensional distribution is closest in divergence to a given distribution. The algorithm is based on the factorization of a pseudo Hankel matrix, defined in terms of the given distribution, into the product of a tall an...
Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation. A symmetric nonnegative tensor, which has an exact symmetric nonnegative factorization, is called a completely positive tensor. This concept extends the concept of completely positive matrices. A classical result in the theory of completely positive m...
Given a nonnegative matrix M , the orthogonal nonnegative matrix factorization (ONMF) problem consists in finding a nonnegative matrix U and an orthogonal nonnegative matrix V such that the product UV is as close as possible to M . The importance of ONMF comes from its tight connection with data clustering. In this paper, we propose a new ONMF method, called ONP-MF, and we show that it performs...
NIMFA is an open-source Python library that provides a unified interface to nonnegative matrix factorization algorithms. It includes implementations of state-of-the-art factorization methods, initialization approaches, and quality scoring. It supports both dense and sparse matrix representation. NIMFA’s component-based implementation and hierarchical design should help the users to employ alrea...
In this article, we integrate the spatial-spectral information of hyperspectral image (HSI) samples into nonnegative matrix factorization (NMF) for affinity learning to address issue HSI clustering. This technique consists three main components: 1) oversegmentation computing spectral-spatial matrix; 2) NMF with guidance obtained and 3) density-based spectral clustering on final matrix. First, i...
In this paper, dimensionality reduction via matrix factorization with nonnegativity constraints is studied. Because of these constraints, it stands apart from other linear dimensionality reduction methods. Here we explore nonnegative matrix factorization in combination with a classifier for protein fold recognition. Since typically matrix factorization is iteratively done, convergence can be sl...
Nonnegative tensor factorization (NTF) is a technique for computing a parts-based representation of high-dimensional data. NTF excels at exposing latent structures in datasets, and at finding good low-rank approximations to the data. We describe an approach for computing the NTF of a dataset that relies only on iterative linear-algebra techniques and that is comparable in cost to the nonnegativ...
Introduction to (near-separable) NMF • NMF Problem: X ∈ Rm×n + is a matrix with nonnegative entries, and we want to compute a nonnegative matrix factorization (NMF) X = WH, where W ∈ Rm×r + and H ∈ Rr×n + . When r < m, this problem is NP-hard. • A separable matrix is one that admits a nonnegative factorization where W = X(:,K), i.e. W is just consists of some subset of the columns of X . A near...
An online nonnegative matrix factorization (NMF) algorithm based on recursive least squares (RLS) is described in a matrix form, and a simplified algorithm for a low-complexity calculation is developed for frame-by-frame online audio source separation system. First, the online NMF algorithm based on the RLS method is described as solving the NMF problem recursively. Next, a simplified algorithm...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید