نتایج جستجو برای: outer independent roman domination number

تعداد نتایج: 1622091  

Journal: :transactions on combinatorics 2012
b basavanagoud sunilkumar m hosamani

a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...

Journal: :Discrete Applied Mathematics 2016

2015
S. K. VAIDYA R. M. PANDIT

A set S of vertices of a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by i(G), is the minimum cardinality of an independent dominating set of G. In this paper, some new classes of graphs with equal domination and independent domination numbers are presented and exa...

2012
Marcin Krzywkowski M. Krzywkowski

A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V (G) \D is independent. The double outer-independent domination number of a graph G, denoted by γ d (G), is the minimum cardinality of a double outer-indepe...

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

Journal: :Discussiones Mathematicae Graph Theory 2019

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید