نتایج جستجو برای: p biharmonic equations
تعداد نتایج: 1491962 فیلتر نتایج به سال:
This paper studies conformal biharmonic immersions. We first study the transformations of Jacobi operator and the bitension field under conformal change of metrics. We then obtain an invariant equation for a conformal biharmonic immersion of a surface into Euclidean 3-space. As applications, we construct a 2-parameter family of non-minimal conformal biharmonic immersions of cylinder into R and ...
We clarify the validity of a method that decouples a boundary value problem of biharmonic equation to two Poisson equations on polygonal domains. The method provides a way of computing deflections of simply supported polygonal plates by using Poisson solvers. We show that such decoupling is not valid if the polygonal domain is not convex. It may fail even when the right hand side function is in...
For certain classes of fractal differential equations on the Sierpinski gasket, built using the Kigami Laplacian, we describe how to approximate solutions using the finite element method based on piecewise harmonic or piecewise biharmonic splines. We give theoretical error estimates, and compare these with experimental data obtained using a computer implementation of the method (available at th...
In this work we study the existence of solutions for the nonlinear eigenvalue problem with p-biharmonic ∆pu = λm(x)|u|p−2u in a smooth bounded domain under Neumann boundary conditions.
The paper considers the solvability of some inverse problems for fractional differential equations with a nonlocal biharmonic operator, which is introduced help involutive transformations in two space variables. considered are solved using Fourier method. properties eigenfunctions and associated functions corresponding spectral studied. Theorems on existence uniqueness solutions to studied prov...
In this paper, we study biharmonic maps into Sol and Nil spaces, two model spaces of Thurston's 3-dimensional geometries. We characterize non-geodesic biharmonic curves in Sol space and prove that there exists no non-geodesic biharmonic helix in Sol space. We also show that a linear map from a Eu-clidean space into Sol or Nil space is biharmonic if and only if it is a harmonic map, and give a c...
in this paper, we study spacelike dual biharmonic curves. we characterize spacelike dual biharmonic curves in terms of their curvature and torsion in the lorentzian dual heisenberg group . we give necessary and sufficient conditions for spacelike dual biharmonic curves in the lorentzian dual heisenberg group . therefore, we prove that all spacelike dual biharmonic curves are spacelike dual heli...
We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...
In geometry processing and shape analysis, several applications have been addressed through the properties of the spectral kernels and distances, such as commute-time, biharmonic, diffusion, and wave distances. Our survey is intended to provide a background on the properties, discretization, computation, and main applications of the Laplace-Beltrami operator, the associated differential equatio...
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید