نتایج جستجو برای: projective modules
تعداد نتایج: 74805 فیلتر نتایج به سال:
Let C denote the category of Hilbert modules which are similar to contractive Hilbert modules. It is proved that if H0, H ∈ C and if H1 is similar to an isometric Hilbert module, then the sequence 0 → H0 → H → H1 → 0 splits. Thus the isometric Hilbert modules are projective in C. It follows that ExtC (K, H) = 0, whenever n > 1, for H, K ∈ C. In addition, it is proved that (Hilbert modules simil...
I will build some standard resolutions for Mackey functors which are projective relative to p-subgroups. Those resolutions are closely related to the poset of p-subgroups. They lead to generalizations of known results on cohomology. They give a way to compute the Cartan matrix for Mackey functors, in terms of p-permutation modules, and to precise the structure of projective Mackey functors. The...
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
This paper is a continuation of the papers J. Pure Appl. Algebra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of modules of finite Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein projective ((n, m)-SG-projective for short) for integers n ≥ 1 and m ≥ 0. We are mainly interested in studyi...
We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...
In 1966 [1], Auslander introduced a class of finitely generated modules having a certain complete resolution by projective modules. Then using these modules, he defined the G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems appropriate then to call the modules of G-dimension 0 the Gorenstein projective modules. In [4], Gorenstein projective modules (whether finite...
In [2, Section 1.6] Peskine and Szpiro prove a theorem on adic approximations of finite free resolutions over local rings which, together with M. Artin's Approximation Theorem [1], allows them to "descend" modules of finite projective dimension over the completions of certain local rings to modules of finite projective dimension over finite etale extensions of those rings. In this note we will ...
By the Quillen-Suslin theorem [Qui76, Sus76], we know that projective modules over a polynomial ring over a field are free. One way of saying this is, that if two projective modules of the same rank are stably isomorphic, then they are isomorphic. That, projective modules of given rank over polynomial rings are stably isomorphic was well known at the time Quillen and Suslin proved their theorem...
Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید