نتایج جستجو برای: respectively arithmetic and geometric mean diameters

تعداد نتایج: 16862607  

2017
Chao Chen Jamie Twycross Jonathan M Garibaldi

Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called t...

A. ZAEEMBASHI H. MOSTAFAEI M. OSTAD RAHIMI

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.

2012
Yu-Ming Chu Shou-Wei Hou Zhong-Hua Shen

respectively. Recently, both mean values have been the subject of intensive research. In particular, many remarkable inequalities and properties for T and S can be found in the literature [1-14]. Let A(a, b) = (a + b)/2,G(a, b) = √ ab, and Mp(a, b) = ((a +b)/2) (p ≠ 0) and M0(a, b) = √ ab be the arithmetic, geometric, and pth power means of two positive numbers a and b, respectively. Then it is...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1377

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

2009
GERHARD J . WOEGINGER

Many classical inequalities are just statements about the convexity or concavity of certain (hidden) underlying functions. This is nicely illustrated by Hardy, Littlewood, and Pólya [5] whose Chapter III deals with “Mean values with an arbitrary function and the theory of convex functions,” and by Steele [12] whose Chapter 6 is called “Convexity—The third pillar.” Yet another illustration is th...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید