نتایج جستجو برای: roman domatic number

تعداد نتایج: 1181179  

Journal: :transactions on combinatorics 2013
ali sahal veena mathad

an equitable domination has interesting application in the contextof social networks. in a network, nodes with nearly equal capacitymay interact with each other in a better way. in the societypersons with nearly equal status, tend to be friendly. in thispaper, we introduce new variant of equitable domination of agraph. basic properties and some interesting results have beenobtained.

2005
Mathieu Liedloff Ton Kloks Jiping Liu Sheng-Lung Peng

A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pro...

Journal: :Australasian J. Combinatorics 2012
M. Adabi E. Ebrahimi Targhi Nader Jafari Rad M. Saied Moradi

A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...

2013
A. Martínez-Pérez D. Oliveros

A Roman domination function on a graph G is a function r : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman function is the value r(V (G)) = ∑ u∈V (G) r(u). The Roman domination number γR(G) of G is the minimum weight of a Roman domination function on G . "Roman Criticality" has been ...

2008
M. Liedloff T. Kloks J. Liu S. H. Peng Mathieu Liedloff Ton Kloks Jiping Liu Sheng-Lung Peng

A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pr...

Journal: :SIAM J. Comput. 2009
Andreas Björklund Thore Husfeldt Mikko Koivisto

Given a set N with n elements and a family F of subsets, we show how to partition N into k such subsets in 2nnO(1) time. We also consider variations of this problem where the subsets may overlap or are weighted, and we solve the decision, counting, summation, and optimisation versions of these problems. Our algorithms are based on the principle of inclusion–exclusion and the zeta transform. In ...

Journal: :Ural mathematical journal 2022

A restrained Roman dominating function (RRD-function) on a graph \(G=(V,E)\) is \(f\) from \(V\) into \(\{0,1,2\}\) satisfying: (i) every vertex \(u\) with \(f(u)=0\) adjacent to \(v\) \(f(v)=2\); (ii) the subgraph induced by vertices assigned 0 under has no isolated vertices. The weight of an RRD-function sum its value over whole set vertices, and domination number minimum \(G.\) In this paper...

Journal: :Discussiones Mathematicae Graph Theory 2013
H. Aram S. Norouzian Seyed Mahmoud Sheikholeslami Lutz Volkmann

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value ω(f) = ∑ v∈V f(v). The k-distance Roman domination number ...

2015
LINFENG XU

In his article published in 1999, Ian Stewart discussed a strategy of Emperor Constantine for defending the Roman Empire. Motivated by this article, Cockayne et al.(2004) introduced the notion of Roman domination in graphs. Let G = (V,E) be a graph. A Roman dominating function of G is a function f : V → {0, 1, 2} such that every vertex v for which f(v) = 0 has a neighbor u with f(u) = 2. The we...

Journal: :Discrete Applied Mathematics 2008
Mathieu Liedloff Ton Kloks Jiping Liu Sheng-Lung Peng

A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f (x) = 0 is adjacent to at least one vertex y with f (y) = 2. The weight of a Roman dominating function is defined to be f (V ) = ∑ x∈V f (x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we first answer ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید