نتایج جستجو برای: semi regularization

تعداد نتایج: 162227  

2009
Amarnag Subramanya Jeff A. Bilmes

We prove certain theoretical properties of a graph-regularized transductive learning objective that is based on minimizing a Kullback-Leibler divergence based loss. These include showing that the iterative alternating minimization procedure used to minimize the objective converges to the correct solution and deriving a test for convergence. We also propose a graph node ordering algorithm that i...

2006
Adrian Corduneanu

In recent years, the study of classification shifted to algorithms for training the classifier from data that may be missing the class label. While traditional supervised classifiers already have the ability to cope with some incomplete data, the new type of classifiers do not view unlabeled data as an anomaly, and can learn from data sets in which the large majority of training points are unla...

2017
Wenbo Hu Jun Zhu Hang Su Jingwei Zhuo Bo Zhang

Supervised topic models leverage label information to learn discriminative latent topic representations. As collecting a fully labeled dataset is often time-consuming, semi-supervised learning is of high interest. In this paper, we present an effective semi-supervised max-margin topic model by naturally introducing manifold posterior regularization to a regularized Bayesian topic model, named L...

2010
Markus Grasmair Frank Lenzen

Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regulari...

Journal: :CoRR 2011
Zhiwu Lu Yuxin Peng

This paper presents a novel L1-norm semisupervised learning algorithm for robust image analysis by giving new L1-norm formulation of Laplacian regularization which is the key step of graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is defined directly over the eigenvectors of the normalized Laplacian matrix, we successfully formulate semi-supervised learning as a...

2013
Mahmood Karimian Mostafa Tavassolipour Shohreh Kasaei

In large databases, the lack of labeled training data leads to major difficulties in classification. Semi-supervised algorithms are employed to suppress this problem. Video databases are the epitome for such a scenario. Fortunately, graph-based methods have shown to form promising platforms for Semi-supervised video classification. Based on multimodal characteristics of video data, different fe...

2017
Min Sun Jing Liu

As a first-order method, the augmented Lagrangian method (ALM) is a benchmark solver for linearly constrained convex programming, and in practice some semi-definite proximal terms are often added to its primal variable's subproblem to make it more implementable. In this paper, we propose an accelerated PALM with indefinite proximal regularization (PALM-IPR) for convex programming with linear co...

2008
Dan Zhang Jingdong Wang Fei Wang Changshui Zhang

The Universum data, defined as a collection of ”nonexamples” that do not belong to any class of interest, have been shown to encode some prior knowledge by representing meaningful concepts in the same domain as the problem at hand. In this paper, we address a novel semi-supervised classification problem, called semi-supervised Universum, that can simultaneously utilize the labeled data, unlabel...

2015
Zhiwu Lu Xin Gao Liwei Wang Ji-Rong Wen Songfang Huang

This paper presents a large-scale sparse coding algorithm to deal with the challenging problem of noiserobust semi-supervised learning over very large data with only few noisy initial labels. By giving an L1-norm formulation of Laplacian regularization directly based upon the manifold structure of the data, we transform noise-robust semi-supervised learning into a generalized sparse coding prob...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید