نتایج جستجو برای: stochastic differential equation

تعداد نتایج: 589792  

Journal: :J. Computational Applied Mathematics 2013
Wanrong Cao Zhongqiang Zhang

We are concerned with the exponential mean-square stability of two-step Maruyama methods for stochastic differential equations with time delay. We propose a family of schemes and prove that it can maintain the exponential mean-square stability of the linear stochastic delay differential equation for every step size of integral fraction of the delay in the equation. Numerical results for linear ...

2013
Georgiy Shevchenko

We prove that the standard conditions that provide unique solvability of a mixed stochastic differential equations also guarantee that its solution possesses finite moments. We also present conditions supplying existence of exponential moments. For a special equation whose coefficients do not satisfy the linear growth condition, we find conditions for integrability of its solution. Keywors. Mix...

2015
DAVID BAÑOS

We consider a process given as the solution of a stochastic differential equation with irregular, path dependent and time-inhomogeneous drift coefficient and additive noise. Explicit and optimal bounds for the Lebesgue density of that process at any given time are derived. The bounds and their optimality is shown by identifying the worst case stochastic differential equation. Then we generalise...

2010
SYED ABBAS MALAY BANERJEE

In this article we have considered a stochastic delay differential equation model for two species competitive phytoplankton system with allelopathic stimulation. We have extended the deterministic model system to a stochastic delay differential equation model system by incorporating multiplicative white noise terms in the growth equations for both species. We have studied the mean square stabil...

2001
RICHARD B. SOWERS

We investigate the behavior of the tangent flow of a stochastic differential equation with a fast drift. The state space of the stochastic differential equation is the two-dimensional cylinder. The fast drift has closed orbits, and we assume that the orbit times vary nontrivially with the axial coordinate. Under a nondegeneracy assumption, we find the rate of growth of the tangent flow. The cal...

2005
Richard F. Bass Krzysztof Burdzy Zhen-Qing Chen

Let Zt be a one-dimensional symmetric stable process of order α with α ∈ (0, 2) and consider the stochastic differential equation dXt = φ(Xt−)dZt. For β < 1 α ∧ 1, we show there exists a function φ that is bounded above and below by positive constants and which is Hölder continuous of order β but for which pathwise uniqueness of the stochastic differential equation does not hold. This result is...

2007
JOHN A. D. APPLEBY XUERONG MAO MARKUS RIEDLE

A geometric Brownian motion with delay is the solution of a stochastic differential equation where the drift and diffusion coefficient depend linearly on the past of the solution, i.e. a linear stochastic functional differential equation. In this work the asymptotic behavior in mean square of a geometric Brownian motion with delay is completely characterized by a sufficient and necessary condit...

2006
Damien Lamberton

In this article we develop a new methodology to prove weak approximation results for general stochastic differential equations. Instead of using a partial differential equation approach as is usually done for diffusions, the approach considered here uses the properties of the linear equation satisfied by the error process. This methodology seems to apply to a large class of processes and we pre...

Journal: :J. Computational Applied Mathematics 2010
Annika Lang

In this paper, a stochastic mean square version of Lax’s equivalence theorem for Hilbert space valued stochastic differential equations with additive and multiplicative noise is proved. Definitions for consistency, stability, and convergence in mean square of an approximation of a stochastic differential equation are given and it is shown that these notions imply similar results as those known ...

2005
S. V. LOTOTSKY B. L. ROZOVSKII

A new method is described for constructing a generalized solution for stochastic differential equations. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and provides a unified framework for the study of ordinary and partial differential equations driven by finiteor infinite-dimensional noise with either adapted or anticipating input. Existence, uniqueness, regula...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید