نتایج جستجو برای: transition metal dichalcogenides
تعداد نتایج: 436925 فیلتر نتایج به سال:
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS₂ with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV...
Transition Metal Dichalcogenides Seongin Hong, Sunkook Kim, and colleagues present the first report which not only proposes a novel approach to improve stability of two-dimensional transition metal dichalcogenides based field-effect transistors but also implements complementary oxide semiconductor inverter circuit using it. In article number 2101012, authors develop high-stability tungsten dise...
Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds and therefore make more "ideal" Schottky junctions than bulk semiconductors, which produce Fermi energy pinning and recombination centers at the interface with bulk metals, inhibiting charge transfer. Here, we observe a more than 10× enhancement in the indirect band gap photoluminescence of transition me...
Dynamic control of conductivity and optical properties via atomic structure changes is of technological importance in information storage. Energy consumption considerations provide a driving force towards employing thin materials in devices. Monolayer transition metal dichalcogenides are nearly atomically thin materials that can exist in multiple crystal structures, each with distinct electrica...
We explore the possibility of storing excitons in excitonic dark states in monolayer semiconducting transition-metal dichalcogenides. In addition to being optically inactive, these dark states require the electron and hole to be spatially separated, thus inhibiting electron/hole recombination and allowing exciton lifetimes to be extended. Based on an atomistic exciton model, we derive transitio...
The integration of atomically-thin layers of two dimensional (2D) materials in nanodevices demands for precise techniques at the nanoscale permitting their local modification, structuration or resettlement. Here, we present the use of Local Oxidation Nanolithography (LON) performed with an Atomic Force Microscope (AFM) for the patterning of nanometric motifs on different metallic Transition Met...
It is well established that defects strongly influence properties in two-dimensional materials. For graphene, atomic defects activate the Raman-active centrosymmetric A1g ring-breathing mode known as the D-peak. The relative intensity of this D-peak compared to the G-band peak is the most widely accepted measure of the quality of graphene films. However, no such metric exists for monolayer semi...
C. Muratore, V. Varshney, J. J. Gengler, J. J. Hu, J. E. Bultman, T. M. Smith, P. J. Shamberger, B. Qiu, X. Ruan, A. K. Roy, and A. A. Voevodin Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469, USA Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA Universal Technology Corporation, Dayton, Ohio ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید