نتایج جستجو برای: tuple total restrained domination number
تعداد نتایج: 1842615 فیلتر نتایج به سال:
For a graph $G=(V(G),E(G))$, an Italian dominating function (ID function) $f:V(G)\rightarrow\{0,1,2\}$ has the property that for every vertex $v\in V(G)$ with $f(v)=0$, either $v$ is adjacent to assigned $2$ under $f$ or least two vertices $1$ $f$. The weight of ID $\sum_{v\in V(G)}f(v)$. domination number minimum taken over all functions $G$. In this paper, we initiate study variant functions....
a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. We define the restrained bondage number br(G) of a nonempty graph G to be the minimum cardinality among all sets of edges E′ ⊆...
For any graph G, let V (G) and E(G) denote the vertex set and the edge set of G respectively. The Boolean function graph B(G, L(G),NINC) of G is a graph with vertex set V (G) ∪ E(G) and two vertices in B(G, L(G),NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is d...
For any graph G, let V (G) and E(G) denote the vertex set and the edge set of G respectively. The Boolean function graph B(G, L(G),NINC) of G is a graph with vertex set V (G) ∪ E(G) and two vertices in B(G, L(G),NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is d...
A set D ⊆ V is called a k-tuple dominating set of a graph G = (V,E) if |NG[v] ∩D| ≥ k for all v ∈ V , where NG[v] denotes the closed neighborhood of v. A set D ⊆ V is called a liar’s dominating set of a graph G = (V,E) if (i) |NG[v] ∩D| ≥ 2 for all v ∈ V , and (ii) for every pair of distinct vertices u, v ∈ V , |(NG[u] ∪NG[v]) ∩D| ≥ 3. Given a graph G, the decision versions of k-Tuple Dominatio...
A longest sequence $(v_1,\ldots,v_k)$ of vertices a graph $G$ is Grundy total dominating if for all $i$, $N(v_i) \setminus \bigcup_{j=1}^{i-1}N(v_j)\not=\emptyset$. The length $k$ the called domination number and denoted $\gamma_{gr}^{t}(G)$. In this paper, studied on four standard products. For direct product we show that $\gamma_{gr}^t(G\times H) \geq \gamma_{gr}^t(G)\gamma_{gr}^t(H)$, conjec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید