We give a simple argument to show that every polynomial f(t) ∈ Z[t] such that f(1) = 1 is the Alexander polynomial of some ribbon 2-knot whose group is a 1-relator group, and we extend this result to links. It is well known that every Laurent polynomial f(t) ∈ Λ = Z[t, t] with f(1) = 1 is the Alexander polynomial of some ribbon 2-knot [7]. (See also [1, 2], for the fibred case, and §7H of [11],...