نتایج جستجو برای: aminoglycoside modifying enzymes

تعداد نتایج: 166314  

Journal: :Antimicrobial agents and chemotherapy 2002
Hae Kyung Lee Sergei B Vakulenko Don B Clewell Stephen A Lerner Joseph W Chow

Random PCR mutagenesis of the enterococcal aph(2")-Ic gene followed by selection for mutant enzymes that confer enhanced levels of aminoglycoside resistance resulted in mutants of APH(2")-Ic with His-258-Leu and Phe-108-Leu substitutions, all of which conferred rises in the MICs of several aminoglycosides. The mutated residues are located outside conserved regions of aminoglycoside phosphotrans...

2013
María S. Ramirez Nikolas Nikolaidis Marcelo E. Tolmasky

Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6')-Ib (aminoglycoside 6'-N-acetyltransferase type Ib) is an enzyme of clinical importance found in a wide variety of gram-negative p...

2011
Keith Poole

Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates ...

Journal: :The Journal of biological chemistry 2003
David D Boehr Stephen I Jenkins Gerard D Wright

The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycosid...

Journal: :Current Opinion in Chemical Biology 2017

2013
Joseph R. Kramer Ichiro Matsumura

The rules that govern adaptive protein evolution remain incompletely understood. Aminoglycoside aminotransferase (3') type IIIa (hereafter abbreviated APH(3')-IIIa) is a good model enzyme because it inactivates kanamycin efficiently; it recognizes other aminoglycoside antibiotics, including amikacin, but not nearly as well. Here we direct the evolution of APH(3')-IIIa variants with increased ac...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید