نتایج جستجو برای: chebyshev pseudo spectral method

تعداد نتایج: 1802286  

1997
Iuliu Sorin Pop

We consider a diierent approach for the Chebyshev-tau spectral method by a modiication of the basis for the test function space. This leads to sparse matrices, which are better conditioned than those generated by the usual method, as being pointed out by some numerical examples.

2000
I S Pop

We propose an eecient implementation of the Chebyshev Galerkin spectral method for the biharmonic operator. This discretization leads to banded matrices which, compared with other methods of the same type, are also better conditioned. The eeciency of the method is illustrated on the Orr-Sommerfeld eigenvalue problem, where an improved convergence can be observed and the spurious eigenvalues are...

2005
WEIZHU BAO W. BAO

In this paper we present numerical methods for the nonlinear Schrödinger equations (NLS) in the semiclassical regimes: iε uεt = − ε 2 ∆u + V (x)u + f(|u|)u, x ∈ R, with nonzero far-field conditions. A time-splitting cosine-spectral (TS-Cosine) method is presented when the nonzero far-field conditions are or can be reduced to homogeneous Neumann conditions, a time-splitting Chebyshev-spectral (T...

2008
Oliver Witzel

In this thesis algorithmic improvements and variants for two-flavor lattice QCD simulations with dynamical fermions are studied using the O(a) improved Dirac-Wilson operator in the Schrödinger functional setup and employing a hybrid Monte Carlo-type (HMC) update. Both, the Hermitian and the Non-Hermitian operator are considered. For the Hermitian Dirac-Wilson operator we investigate the advanta...

Journal: :Axioms 2021

In a recent article, the first and second kinds of multivariate Chebyshev polynomials fractional degree, relevant integral repesentations, have been studied. this we introduce pseudo-Lucas functions show possible applications these new functions. For kind, compute Newton sum rules any orthogonal polynomial set starting from entries Jacobi matrix. representation formulas for powers r×r matrix, a...

2010
Brett N. Ryland Hans Z. Munthe-Kaas

In this paper we describe the use of multivariate Chebyshev polynomials in computing spectral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a spectrally accurate approximation of smooth multivariate functions. In particular we investigate polynomials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2 ...

2006
E. Leriche

Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier-Stokes equations in a cubical domain. The resolution used up to 5.0 million Chebyshev collocation nod...

2015
Nasser H. Sweilam Mohamed M. Khader Mohamed Adel

In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate form...

2006
A. Deloff

A semi-spectral Chebyshev method for solving numerically singular integral equations is presented and applied in the quarkonium bound-state problem in momentum space. The integrals containing both, logarithmic and Cauchy singular kernels, can be evaluated without subtractions by dedicated automatic quadratures. By introducing a Chebyshev mesh and using the Nystrom algorithm the singular integra...

1990
Satish C. REDDY Lloyd N. TREFETHEN

In many calculations, spectral discretization in space is coupled with a standard ordinary differential equation formula in time. To analyze the stability of such a combination, one would like simply to test whether the eigenvalues of the spatial discretization operator (appropriately scaled by the time step k) lie in the stability region for the o.d.e. formula, but it is well known that this k...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید