نتایج جستجو برای: constraint qualifications
تعداد نتایج: 82666 فیلتر نتایج به سال:
The aim of this paper is to study first order optimality conditions for ideal efficient points in the Löwner partial order, when the data functions of the minimization problem are differentiable and convex with respect to the cone of symmetric semidefinite matrices. We develop two sets of first order necessary and sufficient conditions. The first one, formally very similar to the classical Karu...
The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to problems of second-order cone programming (SOCP) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sufficient conditions under the corresponding constraint qualifications. We al...
We propose an augmented Lagrangian-type algorithm for the solution of generalized Nash equilibrium problems (GNEPs). Specifically, we discuss the convergence properties with regard to both feasibility and optimality of limit points. This is done by introducing a secondary GNEP as a new optimality concept. In this context, special consideration is given to the role of suitable constraint qualifi...
We introduce and study a new dual condition which characterizes zero duality gap in nonsmooth convex optimization. We prove that our condition is weaker than all existing constraint qualifications, including the closed epigraph condition. Our dual condition was inspired by, and is weaker than, the so-called Bertsekas’ condition for monotropic programming problems. We give several corollaries of...
Entirely programmed in EDUEL. AIM consists of a batch component for periodic integrity control and an interactive component which provides an instantaneOUS semantic control mechanism at the user interface. For certain simple updates AIM implements a prevention strategy, whereas, in particular detection and recovery strategy is and dynamic integrity constraints the basis of DUEL qualifications. ...
We give new regularity conditions for convex optimization problems in separated locally convex spaces. We completely characterize the stable strong and strong Fenchel-Lagrange duality. Then we give similar statements for the case when a solution of the primal problem is assumed as known, obtaining complete characterizations for the so-called total and, respectively, stable total Fenchel-Lagrang...
Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces
Several notions of constraint qualifications are generalized from the setting of convex inequality systems to that of convex generalized equations. This is done and investigated in terms of the coderivatives and the normal cones, and thereby we provide some characterizations for convex generalized equations to have the metric subregularity. As applications, we establish formulas of the modulus ...
In linear programming it is known that an appropriate nonhomogenious Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite programs under constraint qualifications. The proof includes optimality conditions. The same approach...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید