A crossed product is the functional analysts’ version of a skew group ring. Thus, if α : G→ Aut(A) is an action of a locally compact group G on a Banach algebra A, then a crossed product Banach algebra encodes the action of G on A, and its representation theory is related to pairs (u, π) consisting of a representation u of G and a representation π of A on the same Banach space such that ugπ(a)u...