A matrix D is diagonal if all its off-diagonal entries are zero. If D is diagonal, then its eigenvalues are the diagonal entries, and the characteristic polynomial of D is fD(x) = ∏i=1(x−dii), where dii is the (i, i) diagonal entry of D. A matrix A is diagonalisable if there is an invertible matrix Q such that QAQ−1 is diagonal. Note that A and QAQ−1 always have the same eigenvalues and the sam...