نتایج جستجو برای: finite conjugacy classes
تعداد نتایج: 408814 فیلتر نتایج به سال:
A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...
let $g$ be a non-abelian group. the non-commuting graph $gamma_g$ of $g$ is defined as the graph whose vertex set is the non-central elements of $g$ and two vertices are joined if and only if they do not commute.in this paper we study some properties of $gamma_g$ and introduce $n$-regular $ac$-groups. also we then obtain a formula for szeged index of $gamma_g$ in terms of $n$, $|z(g)|$ and $|g|...
In this investigation of character tables of finite groups we study basic sets and associated representation theoretic data for complementary sets of conjugacy classes. For the symmetric groups we find unexpected properties of characters on restricted sets of conjugacy classes, like beautiful combinatorial determinant formulae for submatrices of the character table and Cartan matrices with resp...
Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...
A family of polynomials parameterized by the conjugacy classes of a finite Coxeter group is investigated. These polynomials, together with the character table of the group, determine the associated generic degrees. The polynomials are described completely for classes that meet a parabolic subgroup whose components are of type A or are dihedral, and for the class of Coxeter elements.
The first part of this paper surveys generating functions methods in the study of random matrices over finite fields, explaining how they arose from theoretical need. Then we describe a probabilistic picture of conjugacy classes of the finite classical groups. Connections are made with symmetric function theory, Markov chains, Rogers-Ramanujan type identities, potential theory, and various meas...
We describe a practical algorithm for computing representatives of the conjugacy classes of maximal subgroups in a finite group, together with details of its implementation for permutation groups in the MAGMA system. We also describe methods for computing complements of normal subgroups and minimal supplements of normal soluble subgroups of finite groups.
Let G be a group. Two elements x, y are said to be z-equivalent if their centralizers are conjugate in G. The class equation of G is the partition of G into conjugacy classes. Further decomposition of conjugacy classes into z-classes provides an important information about the internal structure of the group, cf. [8] for the elaboration of this theme. Let I(Hn) denote the group of isometries of...
The lifting of results from factor groups to the full group is a standard technique for solvable groups. This paper shows how to utilize this approach in the case of non-solvable normal subgroups to compute the conjugacy classes of a finite group.
We discuss rather systematically the principle, implicit in earlier works, that for a “random” element in an arithmetic subgroup of a (split, say) reductive algebraic group over a number field, the splitting field of the characteristic polynomial, computed using any faitfhful representation, has Galois group isomorphic to the Weyl group of the underlying algebraic group. Besides tools such as t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید