نتایج جستجو برای: finite moufang loops
تعداد نتایج: 289165 فیلتر نتایج به سال:
We study non-associative twisted group algebras over (Z2) with cubic twisting functions. We construct a series of algebras that extend the classical algebra of octonions in the same way as the Clifford algebras extend the algebra of quaternions. We study their properties, give several equivalent definitions and prove their uniqueness within some natural assumptions. We then prove a simplicity c...
Let F be a perfect field and M(F ) the nonassociative simple Moufang loop consisting of the units in the (unique) split octonion algebra O(F ) modulo the center. Then Aut(M(F )) is equal to G2(F )o Aut(F ). In particular, every automorphism of M(F ) is induced by a semilinear automorphism of O(F ). The proof combines results and methods from geometrical loop theory, groups of Lie type and compo...
Abstract. We give an interpretation of the construction of torsors from [BeKi10a] in terms of classical projective geometry. For the Desarguesian case, this leads to a reformulation of certain results from [BeKi10a], whereas for the Moufang case the result is new. But even in the Desarguesian case it sheds new light on the relation between the lattice structure and the algebraic structures of a...
During the final steps in the classification of the Moufang quadrangles by Jacques Tits and Richard Weiss a new class of Moufang quadrangles unexpectedly turned up. Subsequently Bernhard Mühlherr and Hendrik Van Maldeghem showed that this class arises as the fixed points and hyperlines of certain involutions of a metasymplectic space (or equivalently a building of type F4). In the same paper th...
If Γ is a 2-Moufang generalized n-gon for n ≤ 6, then Γ is Moufang. © 2004 Elsevier Ltd. All rights reserved. MSC: 20E42; 51E12; 05C25
We study non-associative twisted group algebras over (Z2) n with cubic twisting functions. We construct a series of algebras that extend the classical algebra of octonions in the same way as the Clifford algebras extend the algebra of quaternions. We study their properties, give several equivalent definitions and prove their uniqueness within some natural assumptions. We then prove a simplicity...
A restatement of the Algebraic Dichotomy Conjecture, due to Maroti and McKenzie, postulates that if a finite algebra A possesses a weak near-unanimity term, then the corresponding constraint satisfaction problem is tractable. A binary operation is weak near-unanimity if and only if it is both commutative and idempotent. Thus if the dichotomy conjecture is true, any finite commutative, idempoten...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید