نتایج جستجو برای: fourth order exponential time differenceing runge kutta method
تعداد نتایج: 3828676 فیلتر نتایج به سال:
Higher-order finite-volume flux operators for transport algorithms used within Runge–Kutta time integration schemes on irregular Voronoi (hexagonal) meshes are proposed and tested. These operators are generalizations of thirdand fourth-order operators currently used in atmospheric models employing regular, orthogonal rectangular meshes. Two-dimensional least squares fit polynomials are used to ...
Classical and new numerical schemes are generated using evolutionary computing. Differential Evolution is used to find the coefficients of finite difference approximations of function derivatives, and of single and multi‐ step integration methods. The coefficients are reverse engineered based on samples from a target function and its derivative used for training. The Runge‐Kutta schemes are tra...
This paper is concerned with time-stepping numerical methods for computing sti semi-discrete systems of ordinary di erential equations for transient hypersonic ows with thermo-chemical nonequilibrium. The sti ness of the equations is mainly caused by the viscous ux terms across the boundary layers and by the source terms modeling nite-rate thermo-chemical processes. Implicit methods are needed ...
The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbat...
An embedded diagonally implicit Range-Kutta Nystrom (RKN) method is constructed for the integration of initial value problems for second order ordinary differential equations possessing oscillatory solutions. This embedded method is derived using a three stage diagonally implicit Runge-Kutta Nystrom method of order four within which a third order three stage diagonally implicit Runge-Kutta Nyst...
This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for di erential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.
The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods.
Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties–in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes th...
The wave diffraction from a box in a two-layer fluid was studied by time-domain approach. The Rankine source is used in the upper layer to establish the boundary equation. While the Rankine source and its images are adopted in the lower fluid. Through the construction of a function by velocity potentials of upper and lower velocity potentials on the internal surface, a single set of linear equa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید