نتایج جستجو برای: fuzzy rough sets
تعداد نتایج: 314315 فیلتر نتایج به سال:
The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has b...
Rough set theory is a new method that deals with vagueness and uncertainty emphasized in decision making. The theory provides a practical approach for extraction of valid rules fromdata.This paper discusses about rough sets and fuzzy rough sets with its applications in data mining that can handle uncertain and vague data so as to reach at meaningful conclusions.
The management of uncertainty in databases is necessary for real world applications, especially for systems involving spatial data such as geographic information systems. Rough and fuzzy sets are important techniques that can be used in various ways for modeling uncertainty in data and in spatial relationships between data entities. This chapter discusses various approaches involving rough and ...
This paper further studies the fuzzy rough sets based on fuzzy coverings. We first present the notions of the lower and upper approximation operators based on fuzzy coverings and derive their basic properties. To facilitate the computation of fuzzy coverings for fuzzy covering rough sets, the concepts of fuzzy subcoverings, the reducible and intersectional elements, the union and intersection o...
One of the main obstacles facing current intelligent pattern recognition applications is that of dataset dimensionality. To enable these systems to be effective, a redundancy-removing step is usually carried out beforehand. Rough Set Theory (RST) has been used as such a dataset pre-processor with much success, however it is reliant upon a crisp dataset; important information may be lost as a re...
Since data increases with time and space, many incremental rough based reduction techniques have been proposed. In these techniques, some focus on knowledge representation on the increasing data, some focus on inducing rules from the increasing data. Whereas there is less work on incremental feature selection (i.e., attribute reduction) from the increasing data, especially the increasing real v...
This paper explores the implications of approximating a concept based on the Bayesian decision procedure, which provides a plausible unification of the fuzzy set and rough set approaches for approximating a concept. We show that if a given concept is approximated by one set, the same result given by the α-cut in the fuzzy set theory is obtained. On the other hand, if a given concept is approxim...
One of the main obstacles facing current fuzzy modelling techniques is that of dataset dimensionality. To enable these techniques to be effective, a redundancy-removing step is usually carried out beforehand. Rough Set Theory (RST) has been used as such a dataset pre-processor with much success, however it is reliant upon a crisp dataset; important information may be lost as a result of quantiz...
The fuzzy dependency function proposed in the fuzzy rough set model is widely employed in feature evaluation and attribute reduction. It is shown that this function is not robust to noisy information in this paper. As datasets in real-world applications are usually contaminated by noise, robustness of data analysis models is very important in practice. In this work, we develop a new model of fu...
This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید