نتایج جستجو برای: gaba agonists

تعداد نتایج: 56076  

2010
Niall P. Hyland John F. Cryan

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influen...

Journal: Addiction and Health 2017
Firoozeh Alavian, Hedayat Sahraei Maryam Rafiei-Rad Saeedeh Ghiasvand,

Background: The amygdala is one of the nerve centers involved in drug reward. It is suggested that the central nucleus of the amygdala (CeA) is involved in morphine dependency. The CeA gamma-aminobutyric acid-ergic (GABAergic) system is a mediator of morphine rewarding effects. In this research, the effects of stimulation or inhibition of CeA GABA type B (GABAB) receptors on sensitization acqui...

Journal: :The Journal of neuroscience : the official journal of the Society for Neuroscience 1995
C R Lupica

The effects of enkephalins selective for delta and mu opioid receptors on inhibitory postsynaptic currents (IPSCs) mediated by GABA were studied in chloride-loaded CA1 pyramidal neurons in adult rat hippocampal slices. The mu agonist DAMGO (0.1 microM) significantly reduced the amplitudes of evoked monosynaptic IPSCs, recorded following the antagonism of excitatory glutamate receptors, and this...

2014
Kristin Lees Maria Musgaard Siros Suwanmanee Steven David Buckingham Philip Biggin David Sattelle

Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of th...

2011
Zhe Jin Yang Jin Suresh Kumar-Mendu Eva Degerman Leif Groop Bryndis Birnir

Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid) decreases neuronal excitability by activating GABA(A) channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have sign...

2012
Henrik Ring Suresh Kumar Mendu Shahrzad Shirazi-Fard Bryndis Birnir Finn Hallböök

GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABA(A) receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE) cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to c...

Journal: :Biophysical journal 2006
Norberto M Grzywacz Charles L Zucker

Neal and Cunningham (Neal, M. J., and J. R. Cunningham. 1995. J. Physiol. (Lond.). 482:363-372) showed that GABA(B) agonists and glycinergic antagonists enhance the light-evoked release of retinal acetylcholine. They proposed that glycinergic cells inhibit the cholinergic Starburst amacrine cells and are in turn inhibited by GABA through GABA(B) receptors. However, as recently shown, glycinergi...

Journal: :The Journal of neuroscience : the official journal of the Society for Neuroscience 2010
Aki Takahashi Akiko Shimamoto Christopher O Boyson Joseph F DeBold Klaus A Miczek

The serotonin (5-HT) system in the brain has been studied more than any other neurotransmitter for its role in the neurobiological basis of aggression. However, which mechanisms modulate the 5-HT system to promote escalated aggression is not clear. We here explore the role of GABAergic modulation in the raphé nuclei, from which most 5-HT in the forebrain originates, on escalated aggression in m...

Journal: :The Journal of neuroscience : the official journal of the Society for Neuroscience 2013
R Todd Pressler Wade G Regehr

Within the dorsal lateral geniculate nucleus (dLGN) of the thalamus, retinal ganglion cell (RGC) projections excite thalamocortical (TC) cells that in turn relay visual information to the cortex. Local interneurons in the dLGN regulate the output of TC cells by releasing GABA from their axonal boutons and specialized dendritic spines. Here we examine the functional role of these highly speciali...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید