نتایج جستجو برای: grouping recommender systems

تعداد نتایج: 1222972  

Journal: :Inf. Syst. E-Business Management 2012
Frank Edward Walter Stefano Battiston Mahir Yildirim Frank Schweitzer

The increasing diversity of consumers’ demand, as documented by the debate on the long tail of the distribution of sales volume across products, represents a challenge for retail stores. Recommender systems offer a tool to cope with this challenge. The recent developments in information technology and ubiquitous computing makes it feasible to move recommender systems from the on-line commerce, ...

2013
Mehrbakhsh Nilashi

Recommender Systems are software tools and techniques for suggesting items to users by considering their preferences in an automated fashion. The suggestions provided are aimed at support users in various decisionmaking processes. Technically, recommender system has their origins in different fields such as Information Retrieval (IR), text classification, machine learning and Decision Support S...

2016
Logesh Ravi Subramaniyaswamy Vairavasundaram

Rapid growth of web and its applications has created a colossal importance for recommender systems. Being applied in various domains, recommender systems were designed to generate suggestions such as items or services based on user interests. Basically, recommender systems experience many issues which reflects dwindled effectiveness. Integrating powerful data management techniques to recommende...

Journal: :Knowledge Eng. Review 2005
Derek G. Bridge Mehmet H. Göker Lorraine McGinty Barry Smyth

We describe recommender systems and especially case-based recommender systems. We define a framework in which these systems can be understood. The framework contrasts collaborative with case-based, reactive with proactive, single-shot with conversational, and asking with proposing. Within this framework, we review a selection of papers from the case-based recommender systems literature, coverin...

Journal: :KI 2007
Bamshad Mobasher

Recommender systems have become an important part users’ everyday interactions with Web based applications, particularly those driving e-commerce. Businesses have come to realize the potential of these personalized and adaptive systems in order to increase sales and to retain customers. Likewise, Web users have come to rely on such systems to help them in more efficiently finding items of inter...

2010
Prem Melville Vikas Sindhwani

The goal of a Recommender System is to generate meaningful recommendations to a collection of users for items or products that might interest them. Suggestions for books on Amazon, or movies on Netflix, are real world examples of the operation of industry-strength recommender systems. The design of such recommendation engines depends on the domain and the particular characteristics of the data ...

2012
M. A. El-Dosuky M. Z. Rashad T. T. Hamza Ahmed H. El-Bassiouny

Recommender systems are needed to find food items of one’s interest. We review recommender systems and recommendation methods. We propose a food personalization framework based on adaptive hypermedia. We extend Hermes framework with food recommendation functionality. We combine TF-IDF term extraction method with cosine similarity measure. Healthy heuristics and standard food database are incorp...

2013
M. M. Lotfy A. A. Salama H. A. El-Ghareeb M. A. El-dosuky Mohamed M. Lotfy

Recommender systems are needed to find subject items of one’s interest. We review recommender systems and recommendation methods. We propose a subject personalization framework based on adaptive hypermedia for Computer Science ACM Curricula. We extend Hermes framework with subject recommendation functionality. We combine TF-IDF term extraction method with cosine similarity measure. Specializati...

2003
Lorraine McGinty Barry Smyth

In the past conversational recommender systems have adopted a similarity-based approach to recommendation, preferring cases that are similar to some user query or profile. Recent research, however, has indicated the importance of diversity as an additional selection constraint. In this paper we attempt to clarify the role of diversity in conversational recommender systems, highlighting the pitf...

2012
Tranos Zuva Sunday O. Ojo Seleman M. Ngwira Keneilwe Zuva

Recommender systems are software applications that belong to a class of personalized information filtering technologies that aim to support decision making in large information space. There are various techniques being used to achieve this goal in traditional and mobile recommender systems. The recommender systems techniques are usually classified in four main categories: Collaborative Filterin...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید