نتایج جستجو برای: k forested coloring

تعداد نتایج: 391640  

Journal: :The Computer Science Journal of Moldova 2000
Dmitrii Lozovanu Vitaly I. Voloshin

A mixed hypergraph H = (X, C,D) consists of the vertex set X and two families of subsets: the family C of C-edges and the family D of D-edges. In a coloring, every C-edge has at least two vertices of common color, while every D-edge has at least two vertices of different colors. The largest (smallest) number of colors for which a coloring of a mixed hypergraph H using all the colors exists is c...

Journal: :Discussiones Mathematicae Graph Theory 2012
Wayne Goddard Honghai Xu

Let S = (a1, a2, . . .) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V (G) to {1, 2, . . . , k} such that vertices with color i have pairwise distance greater than ai, and the S-packing chromatic number χS(G) of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper...

Journal: :Journal of Graph Theory 2006
Mickaël Montassier Pascal Ochem André Raspaud

A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V }, there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment with |L(v)| ≥ k for all v ∈ V , then G is said k-choosable. A graph is said to be acyclically k-...

Journal: :Eur. J. Comb. 2015
Michal Debski Zbigniew Lonc Pawel Rzazewski

A harmonious coloring of a k-uniform hypergraphH is a rainbow vertex coloring such that each k-set of colors appears on at most one edge. A rainbow coloring of H is achromatic if each k-set of colors appears on at least one edge. The harmonious (resp. achromatic) number of H , denoted by h(H) (resp. ψ(H)) is the minimum (resp. maximum) possible number of colors in a harmonious (resp. achromatic...

2005
Robert E. Jamison Gretchen L. Matthews

An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of products of paths and cycles are considered. We determine the acyclic chromatic numbers of three such products: grid graphs...

Journal: :Discrete Applied Mathematics 2013
Michael Ferrara Ellen Gethner Stephen G. Hartke Derrick Stolee Paul S. Wenger

A coloring of the vertices of a graph G is said to be distinguishing provided no nontrivial automorphism of G preserves all of the vertex colors. The distinguishing number of G, D(G), is the minimum number of colors in a distinguishing coloring of G. The distinguishing chromatic number of G, χD(G), is the minimum number of colors in a distinguishing coloring of G that is also a proper coloring....

Journal: :Electronic Colloquium on Computational Complexity (ECCC) 2009
Venkatesan Guruswami Ali Kemal Sinop

We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring properly colors an expected fraction 1 − 1 k of edges. We prove that given a graph promised to be k-colorable, it is N...

Journal: :Journal of Combinatorial Theory, Series A 2003

Journal: :CoRR 2013
Marthe Bonamy

We consider the problem of list edge coloring for planar graphs. Edge coloring is the problem of coloring the edges while ensuring that two edges that are incident receive different colors. A graph is k-edge-choosable if for any assignment of k colors to every edge, there is an edge coloring such that the color of every edge belongs to its color assignment. Vizing conjectured in 1965 that every...

2015
Xiaodan Zhao Xiaofeng Zhou

A strong edge coloring of a graph G is an edge coloring such that every two adjacent edges or two edges adjacent to a same edge receive two distinct colors; in other words, every path of length three has three distinct colors in G. The strong chromatic index of G, denoted by   S G  , is the smallest integer k such that G admits a strong edge coloring with k colors. This survey is an brief i...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید