نتایج جستجو برای: knn تنک با عرض کرنل وفقی

تعداد نتایج: 674262  

ژورنال: :علوم زراعی ایران 0
ولی ا... یوسف آبادی موسسه تحقیقات اصلاح و تهیه بذر چغندرقند محمد عبداللهیان نوقابی موسسه تحقیقات اصلاح و تهیه بذر چغندرقند

تحقیق حاضر جهت بررسی نحوه مصرف نیتروژن و تاثیر طول دوره رشد گیاه بر خصوصیات کمی و کیفی چغندرقند رقم 7233 در دشت جوین شهرستان سبزوار اجرا گردید. پنج شیوه تقسیط کود نیتروژن (n1: 25 درصد همزمان با کاشت + 75 درصد در زمان تنک، n2: 50 درصد همزمان با کاشت + 50 درصد در زمان تنک، n3: 25 درصد همزمان با کاشت + 50 درصد در زمان تنک + 25 درصد بیست روز بعد، n4: 100 درصد همزمان با تنک، n5: 50 درصد همزمان با تن...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده برق و کامپیوتر 1391

با توجه به کاربرد روزافزون سیستم های بازشناسی چهره در زندگی روزمره، بهبود عملکرد این سیستم ها مورد توجه بسیاری از پژوهش گران قرار گرفته است. در سیستم های بازشناسی الگو و کاربرد خاص آن یعنی سیستم های تایید چهره، به منظور افزایش کیفیت و کاهش پیچیدگی سیستم، با هدف کاهش بعد داده ها و حفظ هرچه بیشتر اطلاعات جداکننده دسته های مختلف، داده ها به یک فضای ویژگی مناسب نگاشت پیدا می کنند. اخیراً با ورود مفا...

Journal: :CoRR 2017
V. B. Surya Prasath Haneen Arafat Abu Alfeilat Omar Lasassmeh Ahmad B. A. Hassanat

The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its performance competes with the most complex classifiers in the literature. The core of this classifier depends mainly on measuring the distance or similarity between the tested example and the training examples. This raises a major question about which distance measures to be used for the KNN clas...

2016
Jingli Yang Zhen Sun Yinsheng Chen

The k-nearest neighbour (kNN) rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitor...

2008
Ulf Johansson Rikard König Lars Niklasson

* U. Johansson and R. König are equal contributors to this paper. Abstract Standard kNN suffers from two major deficiencies, both related to the parameter k. First of all, it is well-known that the parameter value k is not only extremely important for the performance, but also very hard to estimate beforehand. In addition, the fact that k is a global constant, totally independent of the particu...

2010
Usha Sakthivel

Activity recognition is one of the most important technology behind many applications such as medical research, human survey system and it is an active research topic in health care and smart homes. Smart phones are equipped with various built-in sensing platforms like accelerometer, gyroscope, GPS, compass sensor and barometer, we can design a system to capture the state of the user. Activity ...

Journal: :CoRR 2017
Mark Kibanov Martin Becker Juergen Mueller Martin Atzmüller Andreas Hotho Gerd Stumme

The k-Nearest Neighbor (kNN) classification approach is conceptually simple – yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e. g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each ins...

Journal: :Inf. Sci. 2016
Enmei Tu Yaqian Zhang Lin Zhu Jie Yang Nikola K. Kasabov

k Nearest Neighbors (kNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kNN algorithm which can effectively handle both Gaussian d...

Journal: :Inf. Sci. 2016
Joaquín Derrac Francisco Chiclana Salvador García Francisco Herrera

One of the most known and effective methods in supervised classification is the K-Nearest Neighbors classifier. Several approaches have been proposed to enhance its precision, with the Fuzzy K-Nearest Neighbors (Fuzzy-kNN) classifier being among the most successful ones. However, despite its good behavior, Fuzzy-kNN lacks of a method for properly defining several mechanisms regarding the repres...

2017
Prajakta Chaudhari

In multilabel classification each example is represented with features and associated with multiple labels. Multilabel classification aims to predict set of labels for unseen instances. Researchers have developed multilabel classification using both the problem transformation approach and algorithm adaptation approach. An algorithm called MLkNN that follows algorithm adaptation approach has bee...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید