نتایج جستجو برای: mah valat
تعداد نتایج: 2022 فیلتر نتایج به سال:
از آنجائی که پدیده سایش در بسیاری از کاربردها به ویژه در آمیزه ترد تایر خودروها از اهمیت ویژه ای برخوردار است و بعلت میزان بالای دوده مصرفی جهت کاهش سایش، وزن آمیزه ترد افزایش می یابد. لذا در پژوهش حاضر امکان جایگزینی بخشی از دوده با مقدار کمتری از نانو رس جهت کاهش وزن نهایی ترد تایر بررسی شده است که این امر باعث کاهش میزان سایش سطحی ترد و همچنین کاهش میزان سوخت مصرفی خودروها می گردد. در این ...
Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid-electrolyte interphase (SEI), and eventual capacity fading. A...
This work elucidates the manufacturing of lithium titanate (Li4Ti5O12, LTO) electrodes via the aqueous process using sodium carboxymethylcellulose (CMC), guar gum (GG) or pectin as binders. To avoid aluminum current collector dissolution due to the rising slurries’ pH, phosphoric acid (PA) is used as a pH-modifier. The electrodes are characterized in terms of morphology, adhesion strength and e...
The aluminophosphate (AlPO) JDF-2 is prepared hydrothermally with methylammonium hydroxide (MAH+·HO-, MAH+ = CH3NH3+), giving rise to a microporous AEN-type framework with occluded MAH+ cations and extra-framework (Al-bound) HO- anions. Despite the presence of these species within its pores, JDF-2 can hydrate upon exposure to atmospheric moisture to give AlPO-53(A), an isostructural material wh...
The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene ...
Silicon has a high specific capacity of 4200 mAh/g as lithium-ion battery anodes, but its rapid capacity fading due to >300% volume expansion and pulverization presents a significant challenge for practical applications. Here we report a core-shell TiC/C/Si inactive/active nanocomposite for Si anodes demonstrating high specific capacity and excellent electrochemical cycling. The amorphous silic...
This work describes a potential anode material for lithium-ion batteries (LIBs), namely, anatase TiO2 nanoparticle-decorated carbon nanotubes (CNTs@TiO2). The electrochemical properties of CNTs@TiO2 were thoroughly investigated using various electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic cycling, and rate experiments. It was revea...
The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, whi...
Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. ...
Here, we report a facile hydrothermal approach for synthesizing anatase TiO2 hierarchical mesoporous submicrotubes (ATHMSs) with the aid of long-chain polymer as soft template. The TiO2 nanocrystals, with sizes of 6-8 nm, are well interconnected with each other to build tubular architectures with diameters of 0.3-1.5 μm and lengths of 10-25 μm. Such highly porous structures give rise to very la...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید