نتایج جستجو برای: maximal 2 rainbow domination number

تعداد نتایج: 3463204  

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

Journal: :iranian journal of science and technology (sciences) 2014
j. baskar babujee

the crossing number of a graph  is the minimum number of edge crossings over all possible drawings of  in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.

2010
Anush Poghosyan

Domination is a rapidly developing area of research in graph theory, and its various applications to ad hoc networks, distributed computing, social networks and web graphs partly explain the increased interest. This thesis focuses on domination theory, and the main aim of the study is to apply a probabilistic approach to obtain new upper bounds for various domination parameters. Chapters 2 and ...

2012
Abdollah Khodkar

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...

Journal: :Discrete Mathematics 2002
Teresa W. Haynes Michael A. Henning

The independent domination number of a graph G, denoted i(G), is the minimum cardinality of a maximal independent set of G. A maximal independent set of cardinality i(G) in G we call an i(G)-set. The graph G is called i-excellent if every vertex of G belongs to some i(G)-set. We provide a constructive characterization of i-excellent trees. c © 2002 Elsevier Science B.V. All rights reserved.

Journal: :Mathematics 2021

If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the induced by VG−NG[S] contains no edges. The minimum cardinality G called isolation number G, and it denoted ι(G). It known that ι(G)≤n3 bound sharp. A subset dominating in NG[S]=VG. domination number, γ(G). In this paper, analyze family trees T where ι(T)=γ(T), prove ι(T)=n3 implies ι(T)=γ(T). Moreover, give different equiv...

Journal: :Appl. Math. Lett. 2008
Vadim E. Zverovich

The following fundamental result for the domination number γ(G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ(G) ≤ ln(δ + 1) + 1 δ + 1 n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29–34...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید