نتایج جستجو برای: nomura algebra
تعداد نتایج: 70123 فیلتر نتایج به سال:
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans Katsufumi Dejima , Daisuke Murata, Souhei Mizuguchi, Kazuko H. Nomura, Tomomi Izumikawa, Hiroshi Kitagawa, Keiko Gengyo-Ando , Sawako Yoshina, Tomomi Ichimiya, Shoko Nishihara, Shohei Mitani and Kazuya Nomura* From the Department of Biology, Faculty of Sciences 33, Kyushu University, F...
For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')={0}$. In this paper, among other things, we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^ast$-algebra is $(-1)$-Weakly amenable.
In this paper we review the concepts of the superalgebra, superderivation and some properties of them. We will define algebraic and differential superderivations on a superalgebra and will prove some theorems about them, Then we consider a superalgebra bundle, that is an algebra bundle which its fibers are superalgebras and then characterize the superderivations of the algebra of sections of th...
Let A be a Banach algebra. A is called ideally amenable if for every closed ideal I of A, the first cohomology group of A with coefficients in I* is trivial. We investigate the closed ideals I for which H1 (A,I* )={0}, whenever A is weakly amenable or a biflat Banach algebra. Also we give some hereditary properties of ideal amenability.
recently, the algebraic theory of mv -algebras is intensively studied. in this paper, we extend the concept of derivation of $mv$-algebras and we give someillustrative examples. moreover, as a generalization of derivations of $mv$ -algebraswe introduce the notion of $f$-derivations and $(f; g)$-derivations of $mv$-algebras.also, we investigate some properties of them.
In this note, we study the lattice structure on the class of all weak hyper K-ideals of a hyper K-algebra. We first introduce the notion of (left,right) scalar in a hyper K-algebra which help us to characterize the weak hyper K-ideals generated by a subset. In the sequel, using the notion of a closure operator, we study the lattice of all weak hyper K-ideals of ahyper K-algebra, and we prove a ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید