نتایج جستجو برای: nsga optimization
تعداد نتایج: 318922 فیلتر نتایج به سال:
Many-objective optimization refers to optimization problems with a number of objectives considerably larger than two or three. In this paper, a study on the performance of the Fast Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) for handling such many-objective optimization problems is presented. In its basic form, the algorithm is not well suited for the handling of a larger number o...
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evol...
Two multi-objective genetic algorithms, an elitist version of MOGA and NSGA-II, were applied to solve two linear control design problems. The first was a H2 problem with a PI controller structure, for a first order stable plant. The second was a mixed H2/H4 control problem. In both cases, three indicators were used to evaluate each algorithm performance: Set coverage, spread and hypervolume. It...
One way to cope with a huge design space formed by several parameters is using methods for Automatic Design Space Exploration (ADSE). Recently we developed a Framework for Automatic Design Space Explorations focused on micro-architectural optimizations. In this article we evaluate the influence of three different evolutionary algorithms on the performance of design space explorations. More prec...
We propose a new multi-objective genetic programming (MOGP) for automatic construction of image feature extraction programs (FEPs). The proposed method was originated from a well known multiobjective evolutionary algorithm (MOEA), i.e., NSGA-II. The key differences are that redundancy-regulation mechanisms are applied in three main processes of the MOGP, i.e., population truncation, sampling, a...
In this paper, a new genetic algorithm for multi-objective optimization problems is introduced. That is called ”Neighborhood Cultivation GA (NCGA)”. In the recent studies such as SPEA2 or NSGA-II, it is demonstrated that some mechanisms are important; the mechanisms of placement in an archive of the excellent solutions, sharing without parameters, assign of fitness, selection and reflection the...
Non-dominated Sorting Genetic Algorithm (NSGA) has established itself as a benchmark algorithm for Multiobjective Optimization. The determination of pareto-optimal solutions is the key to its success. However the basic algorithm suffers from a high order of complexity, which renders it less useful for practical applications. Among the variants of NSGA, several attempts have been made to reduce ...
Multiobjective cellular genetic algorithms (MOcGAs) are variants of evolutionary computation algorithms by organizing the population into grid structures, which are usually 2D grids. This paper proposes a new MOcGA, namely cosine multiobjective cellular genetic algorithm (C-MCGA), for continuous multiobjective optimization. The CMCGA introduces two new components: a 3D grid structure and a cosi...
In this paper, a simple but efficient Non-dominated Sorting Genetic Algorithm (NSGA) II based technique is proposed for optimizing the Degree of Hybridization (DOH) in parallel passenger hybrid cars. The authors’ objective is to improve performance, maximize fuel economy and at the same time, minimize mass and emissions as much as possible, by optimal selection of DOH. The NSGA-II, which is a m...
This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The cas...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید