نتایج جستجو برای: nuclear reprogramming

تعداد نتایج: 249719  

Journal: :Cell 2005
M. Azim Surani

Embryonic stem cells have two unique properties. They are capable of indefinite self-renewal and, being pluripotent, they can differentiate into all possible cell types, including germ cells. A new study by Cowan et al. (2005) published in Science shows that human embryonic stem cells are able to reprogram the nuclei of fully differentiated human somatic cells, apparently conferring on them a p...

Journal: :The International journal of developmental biology 2015
Fei Han Xia Li Dandan Song Shaoshuai Jiang Qun Xu Yunhai Zhang

Somatic cell nuclear transplantation (SCNT) and induced pluripotent stem cell (iPSC) technologies can be employed to change cell fate by reprogramming. The discoveries of SCNT and iPSCs were awarded the Nobel Prize for Physiology and Medicine in 2012, which reaffirmed the importance of cell fate plasticity. However, the low cloning efficiency of SCNT and differences between iPSCs and embryonic ...

Journal: :Cloning and stem cells 2009
Gesine Fleischmann Peter A Horn

In March 2009, the fifth International Meeting of the Stem Cell Network North Rhine Westphalia took place in Aachen, Germany. Numerous fascinating presentations about reprogramming, stem cells, and therapeutic devices were given. A number of excellent speakers from all over the world were invited to present their work. Over 20 high-profile presentations were given on 2 days under the five diffe...

2017
Shinji Misu Marina Takebayashi Kei Miyamoto

Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional...

Journal: :Current stem cell research & therapy 2006
Ilham Saleh Abuljadayel

Processes involving conversion of mature adult cells into undifferentiated cells have tremendous therapeutic potential in treating a variety of malignant and non-malignant disorders, including degenerative diseases. This can be achieved in autologous or allogeneic settings, by replacing either defective cells or regenerating those that are in deficit through reprogramming more committed cells i...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید