نتایج جستجو برای: oriented submanifold

تعداد نتایج: 130636  

2007
Alberto S. Cattaneo Marco Zambon M. Zambon

In this note we consider an arbitrary submanifold C of a Poisson manifold P and ask whether it can be embedded coisotropically in some bigger submanifold of P . We define the classes of submanifolds relevant to the question (coisotropic, Poisson-Dirac, pre-Poisson ones), present an answer to the above question and consider the corresponding picture at the level of Lie groupoids, making concrete...

2009
Damien Gayet

Let M7 a manifold with holonomy in G2, and Y 3 an associative submanifold with boundary in a coassociative submanifold. In [5], the authors proved that MX,Y , the moduli space of its associative deformations with boundary in the fixed X, has finite virtual dimension. Using Bochner’s technique, we give a vanishing theorem that forces MX,Y to be locally smooth. MSC 2000: 53C38 (35J55, 53C21, 58J32).

2008
Nicolas Ginoux

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classif...

2005
Qingtao Chen

generalization was given by Atiyah and Hirzebruch [AH], which states that ∧ Agenus of a closed oriented smooth spin manifold is an even integer. Landweber [La] shows that we can use the elliptic genus to get the Ochanine result directly from the divisibility results of Atiyah and Hizebruch [AH]. In 1972, Rokhlin [R2] established a congruence formula of the type φ(B) ≡ Sign(M)−Sign(B·B) 8 mod 2Z...

2000

For this quarter of century, differential operators in a lower dimensional submanifold embedded or immersed in real n-dimensional euclidean space E n have been studied as quantum mechanical models, which are realized as restriction of the operators in E n to the submanifold. For this decade, the Dirac operators in the submanifold have been investigated in such a scheme , which are identified wi...

1999

For this quarter of century, quantum differential operators in a lower dimensional submanifold embedded or immersed in real n-dimensional euclidean space E n have been studied as physical models, which are realized as restriction of the operators in E n to the submanifold. For this decade, I have been investigating the Dirac operators in the submanifold, which are identified with operators of t...

2009
Hongyu He Naohiro Kato HONGYU HE NAOHIRO KATO

The complexity in a biological system may be caused by both the number of variables involved and the number of system constants that can vary. A biological system in the subcellular level often stabilizes after a certain period of time. Its asymptote can then be described as an equilibrium under certain continuity assumptions. The biological quantities at the equilibrium can be detected by expe...

2004
BANG-YEN CHEN SHI-JIE LI

We introduce an invariant, called the contact number, associated with each Euclidean submanifold. We show that this invariant is, surprisingly, closely related to the notions of isotropic submanifolds and holomorphic curves. We are able to establish a simple criterion for a submanifold to have any given contact number. Moreover, we completely classify codimension-2 submanifolds with contact num...

2009
Michael Efroimsky

We revisit the Lagrange and Delaunay systems of equations for the orbital elements, and point out a previously neglected aspect of these equations: in both cases the orbit resides on a certain 9-dimensional submanifold of the 12-dimensional space spanned by the orbital elements and their time derivatives. We demonstrate that there exists a vast freedom in choosing this submanifold. This freedom...

1998
HEIKO EWERT

A submanifold in a symmetric space is called equifocal if it has a globally flat abelian normal bundle and its focal data is invariant under normal parallel transportation. This is a generalization of the notion of isoparametric submanifolds in Euclidean spaces. To each equifocal submanifold, we can associate a Coxeter group, which is determined by the focal data at one point. In this paper we ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید