نتایج جستجو برای: radial basis function rbf network
تعداد نتایج: 2160828 فیلتر نتایج به سال:
A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...
ICE is a new incremental construction algorithm of a hybrid system for continuous learning tasks. The basis of the hybrid system is a radial basis function (RBF) network layer. The second layer consists of local models. The two layers are closely combined with a strong interaction. For example information from the model-layer is used by the RBF-layer to decide if new RBF-neurons are needed and ...
In this paper the Rank M-Type Radial Basis Function (RMRBF) neural network is used for the classification of Pap smear microscopic images. Simulation results indicate that the proposed neural network consistently outperforms the RBF network in terms of classification capabilities.
We propose a simple but efficient method to extract rules from the radial basis function (RBF) neural network. Firstly, the data are classified by an RBF classifier. During training the RBF network, we allow for large overlaps between clusters corresponding to the same class to reduce the number of hidden neurons while maintaining classification accuracy. Secondly, centers of the kernel functio...
In this work an attempt has been made to estimate the pollution flashover voltage under various meteorological factors using radial basis function (RBF) neural networks. Orthogonal least squares (OLS) learning method is used in order to improve the lines performance against the pollution flashover of the post insulators. The technique of RBF neural network is employed to model the relationship ...
To estimate the Cation Exchange Capacity (CEC), indirect manner used of Pedotransfer Functions (PTFs). CEC is one of the important soil fertility factors, and not measured directly because it is costly and time consuming. Thus, used from regression equations between easily and non-easily soil properties. The purpose of this research, is develop the PTFs for CEC, with use of easily available soi...
Three methods for improving the performance of (gaussian) radial basis function (RBF) networks were tested on the NETtalk task. In RBF, a new example is classiied by computing its Euclidean distance to a set of centers chosen by unsupervised methods. The application of supervised learning to learn a non-Euclidean distance metric was found to reduce the error rate of RBF networks, while supervis...
The appropriate operation of a radial basis function (RBF) neural network depends mainly upon an adequate choice of the parameters of its basis functions. The simplest approach to train an RBF network is to assume fixed radial basis functions defining the activation of the hidden units. Once the RBF parameters are fixed, the optimal set of output weights can be determined straightforwardly by u...
The identification of nonlinear systems by artificial neural networks has been successfully applied in many applications. In this context, the radial basis function neural network (RBF-NN) is a powerful approach for nonlinear identification. A RBF neural network has an input layer, a hidden layer and an output layer. The neurons in the hidden layer contain Gaussian transfer functions whose outp...
Studies convergence properties of radial basis function (RBF) networks for a large class of basis functions, and reviews the methods and results related to this topic. The authors obtain the network parameters through empirical risk minimization. The authors show the optimal nets to be consistent in the problem of nonlinear function approximation and in nonparametric classification. For the cla...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید