نتایج جستجو برای: resonance energy

تعداد نتایج: 860483  

Journal: :Current opinion in structural biology 2004
Elke Haustein Petra Schwille

Being praised for the mere fact of enabling the detection of individual fluorophores a dozen years ago, single-molecule techniques nowadays represent standard methods for the elucidation of the structural rearrangements of biologically relevant macromolecules. Single-molecule-sensitive techniques, such as fluorescence correlation spectroscopy, allow real-time access to a multitude of molecular ...

2010
Shui-Nee Chow Wen Huang Yao Li Haomin Zhou

We present a Parrondo’s paradox for free energy in a classical flashing ratchet model and use it as an alternative way to interpret the working mechanism of molecular motors. We also study the efficiency of molecular motors measured by their free energies. Our example demonstrates that a molecular motor can gain up to 20% in its free energy during the process. In addition, we report a noise ind...

2014
Amar B. T. Ghisaidoobe Sang J. Chung

Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluoresc...

2016
Yansheng Li Hongwu Du Wenqian Wang Peixun Zhang Liping Xu Yongqiang Wen Xueji Zhang

DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as inconstant programmable templates for assembly of biosensors. In this paper, a versatile, scalable and multiplex detection system is reported based on an extending fluorescent resonance energy transfer (FRET) cascades on a linear DNA assemblies. Seven combinations of three kinds ...

2011
Luís M. S. Loura Manuel Prieto

Förster resonance energy transfer (FRET), in most applications used as a "spectroscopic ruler," allows an easy determination of the donor-acceptor intermolecular distance. However, the situation becomes complex in membranes, since around each donor there is an ensemble of acceptors at non-correlated distances. In this review, state-of-the-art methodologies for this situation are presented, usua...

Journal: :Microscopy research and technique 2012
Elizabeth Hinde Michelle A Digman Christopher Welch Klaus M Hahn Enrico Gratton

We present here the phasor approach to biosensor Förster resonance energy transfer (FRET) detection by fluorescence lifetime imaging microscopy (FLIM) and show that this method of data representation is robust towards biosensor design as well as the fluorescence artifacts inherent to the cellular environment. We demonstrate this property on a series of dual and single chain biosensors, which re...

2013
Aymeric Leray Sergi Padilla-Parra Julien Roul Laurent Héliot Marc Tramier

Förster Resonance Energy Transfer (FRET) measured with Fluorescence Lifetime Imaging Microscopy (FLIM) is a powerful technique to investigate spatio-temporal regulation of protein-protein interactions in living cells. When using standard fitting methods to analyze time domain FLIM, the correct estimation of the FRET parameters requires a high number of photons and therefore long acquisition tim...

2017
Yangyang Xie Chong Geng Yiqun Gao Jay Guoxu Liu Zi-Hui Zhang Yonghui Zhang Shu Xu Wengang Bi

In this report, to tackle the thermal fluorescent quenching issue of II-VI semiconductor quantum dots (QDs), which hinders their on-chip packaging application to light-emitting diodes (LEDs), a QD-ZnS nanosheet inorganic assembly monolith (QD-ZnS NIAM) is developed through chemisorption of QDs on the surface of two-dimensional (2D) ZnS nanosheets and subsequent assembly of the nanosheets into a...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2009
Sander Verbrugge Zdenek Lansky Erwin J G Peterman

The motor protein Kinesin-1 drives intracellular transport along microtubules, with each of its two motor domains taking 16-nm steps in a hand-over-hand fashion. The way in which a single-motor domain moves during a step is unknown. Here, we use Förster resonance energy transfer (FRET) between fluorescent labels on both motor domains of a single kinesin. This approach allows us to resolve the r...

Journal: :The EMBO journal 1998
N G Walter K J Hampel K M Brown J M Burke

The complex formed by the hairpin ribozyme and its substrate consists of two independently folding domains which interact to form a catalytic structure. Fluorescence resonance energy transfer methods permit us to study reversible transitions of the complex between open and closed forms. Results indicate that docking of the domains is required for both the cleavage and ligation reactions. Dockin...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید