نتایج جستجو برای: ricci curvature

تعداد نتایج: 44758  

2012
Peter M. Topping

A fundamental tool in the analysis of Ricci flow is a compactness result of Hamilton in the spirit of the work of Cheeger, Gromov and others. Roughly speaking it allows one to take a sequence of Ricci flows with uniformly bounded curvature and uniformly controlled injectivity radius, and extract a subsequence that converges to a complete limiting Ricci flow. A widely quoted extension of this re...

2008
JOSÉ A. CARRILLO LEI NI

We show that gradient shrinking, expanding or steady Ricci solitons have potentials leading to suitable reference probability measures on the manifold. For shrinking solitons, as well as expanding soltions with nonnegative Ricci curvature, these reference measures satisfy sharp logarithmic Sobolev inequalities with lower bounds characterized by the geometry of the manifold. The geometric invari...

2009
MATTHEW GURSKY MICAH WARREN

We show that on a compact Riemannian manifold with boundary there exists u ∈ C(M) such that, u|∂M ≡ 0 and u solves the σk-Ricci problem. In the case k = n the metric has negative Ricci curvature. Furthermore, we show the existence of a complete conformally related metric on the interior solving the σk-Ricci problem. By adopting results of [14], we show an interesting relationship between the co...

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

2008
Bing Wang

Consider {(M, g(t)), 0 ≤ t < T < ∞} as an unnormalized Ricci flow solution: dgij dt = −2Rij for t ∈ [0, T ). Richard Hamilton shows that if the curvature operator is uniformly bounded under the flow for all t ∈ [0, T ) then the solution can be extended over T . Natasa Sesum proves that a uniform bound of Ricci tensor is enough to extend the flow. We show that if Ricci is bounded from below, the...

2001
Thomas Ivey THOMAS IVEY

The Ricci soliton condition reduces to a set of ODEs when one assumes that the metric is a doubly-warped product of a ray with a sphere and an Einstein manifold. If the Einstein manifold has positive Ricci curvature, we show there is a one-parameter family of solutions which give complete non-compact Ricci solitons.

2008
YANG BO

By extending Koiso’s examples to the non-compact case, we construct complete gradient Kähler-Ricci solitons of various types on certain holomorphic line bundles over compact Kähler-Einstein manifolds. Moreover, a uniformization result on steady gradient Kähler-Ricci solitons with nonnegative Ricci curvature is obtained under additional assumptions.

2004
M. Sharif

We derive matter collineations for some static spherically symmetric spacetimes and compare the results with Killing, Ricci and Curvature symmetries. We conclude that matter and Ricci collineations are not, in general, the same.

2006
Shu-Yu Hsu

Suppose M is a compact n-dimensional manifold, n ≥ 2, with a metric gij(x, t) that evolves by the Ricci flow ∂tgij = −2Rij in M × (0, T ). We will give a simple proof of a recent result of Perelman on the non-existence of shrinking breather without using the logarithmic Sobolev inequality. It is known that Ricci flow is a very powerful tool in understanding the geometry and structure of manifol...

1999
K. M. Bekarian A. A. Melkonian

The Ricci curvature criterion is used for the investigation of the relative instability of several configurations of N-body gravitating systems. It is shown, that the systems with double massive centers are more unstable than the homogeneous systems and those with one massive center. In general this shows the efficiency of the Ricci curvature method introduced by Gurzadyan and Kocharyan (1987) ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید