نتایج جستجو برای: semi open set star semi compact space
تعداد نتایج: 1673041 فیلتر نتایج به سال:
A homeomorphism of a compact metric space is tight provided every non-degenerate compact connected (not necessarily invariant) subset carries positive entropy. It is shown that every C diffeomorphism of a closed surface factors to a tight homeomorphism of a generalized cactoid (roughly, a surface with nodes) by a semi-conjugacy whose fibers carry zero entropy. Stony Brook IMS Preprint #2002/04 ...
We study deformations of hypercomplex structures on compact Lie groups. Our calculation is through the complex deformation theory of the associated twistor spaces. In general, we nd complete parameter spaces of hypercomplex structures associated to compact semi-simple Lie groups. In particular, we discover the complete moduli space of hypercomplex structures on the product of Hopf surfaces.
A coordinate cone in R n is an intersection of some coordinate hy-perplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of R n , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This can be viewed as a generalization of the convexity property. Semi-monotone sets have a numb...
Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{rm{BSE}}(Delta(A))$ consisting of all BSE-functions on $Delta(A)$ where $Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterizatio...
We study regularity properties of the subdifferential of proper lower semicontinuous convex functions in Hilbert spaces. More precisely, we investigate the metric regularity and subregularity, the strong regularity and subregularity of such a subdifferential. We characterize each of these properties in terms of a growth condition involving the function.
Minimal, strongly proximal actions of locally compact groups on compact spaces, also known as boundary actions, were introduced by Furstenberg in the study of Lie groups. In particular, the action of a semi-simple real Lie group G on homogeneous spaces G/Q where Q ⊂ G is a parabolic subgroup, are boundary actions. Countable discrete groups admit a wide variety of boundary actions. In this note ...
We show that in a Banach space X every closed convex subset is strongly proximinal if and only if the dual norm is strongly sub differentiable and for each norm one functional f in the dual space X∗, JX(f) the set of norm one elements in X where f attains its norm is compact. As a consequence, it is observed that if the dual norm is strongly sub differentiable then every closed convex subset of...
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید