نتایج جستجو برای: semi projective module
تعداد نتایج: 224324 فیلتر نتایج به سال:
For an (n − 1)-Auslander algebra Λ with global dimension n ≥ 2, we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is of finite representation type and the projective dimension or injective dimension of any indecomposable module in modΛ is at most n − 1. As a result, we have that for an Auslander algebra Λ with global dimension 2, if Λ admits a trivial max...
In this paper, projective modules over a quantale are characterized by distributivity, continuity, and adjointness conditions. It is then show that a morphism Q // A of commutative quantales is coexponentiable if and only if the corresponding Q-module is projective, and hence, satisfies these equivalent conditions.
We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained. Keywords—faithfully balanced se...
By a well known theorem of K. Morita, any equivalence between full module categories over rings R and S, are given by a bimodule RPS , such that RP is a finitely generated projective generator in R-Mod and S = EndR(P ). There are various papers which describe equivalences between certain subcategories of R-Mod and S-Mod in a similar way with suitable properties of RPS . Here we start from the o...
ar X iv : 0 80 5 . 32 59 v 1 [ m at h . A G ] 2 1 M ay 2 00 8 SELF - DUAL PROJECTIVE TORIC VARIETIES
Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .
We prove various extensions of the Local Flatness Criterion over a Noetherian local ring R with residue field k. For instance, if Ω is a complete R-module of finite projective dimension, then Ω is flat if and only if Torn (Ω, k) = 0 for all n = 1, . . . , depth(R). In low dimensions, we have the following criteria. If R is onedimensional and reduced, then Ω is flat if and only if Tor1 (Ω, k) = ...
The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.
A (right R-) module N is said to be a Whitehead test module for projectivity (shortly: a p-test module) provided for each module M , ExtR(M,N) = 0 implies M is projective. Dually, i-test modules are defined. For example, Z is a p-test abelian group iff each Whitehead group is free. Our first main result says that if R is a right hereditary non-right perfect ring, then the existence of p-test mo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید