نتایج جستجو برای: space time fractional differential equations
تعداد نتایج: 2647072 فیلتر نتایج به سال:
in this paper, we apply the local fractional laplace transform method (or yang-laplace transform) on volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. the iteration procedure is based on local fractional derivative operators. this approach provides us with a convenient way to find a solution ...
in recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. the following method is based on vector forms of haar-wavelet functions. in this paper, we will introduce one dimensional haar-wavelet functions and the haar-wavelet operational matrices of the fractional order integration. also the haar-wavelet operational matrice...
in this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional brownian motion in a hilbert space. we establish the existence and uniqueness of mild solutions for these equations under non-lipschitz conditions with lipschitz conditions being considered as a special case. an example is provided to illustrate the theory
Abstract We study fractional differential equations of Riemann–Liouville and Caputo type in Hilbert spaces. Using exponentially weighted spaces functions defined on $${\mathbb {R}}$$ R , we define operators by means a functional calculus using the Fourier transform. Main tools are extrapolation- interpolation...
In this article, we implement a relatively new analytical technique, the reproducing kernel Hilbert space method (RKHSM), for solving integro-differential equations of fractional order. The solution obtained by using the method takes the form of a convergent series with easily computable components. Two numerical examples are studied to demonstrate the accuracy of the present method. The presen...
It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equation. The fractional derivatives are described...
One of the ongoing issues with fractional-order diffusion models is the design of efficient numerical schemes for the space and time discretizations. Until now, most models have relied on a low-order finite difference method to discretize both the fractional-order space and time derivatives. While the finite difference method is simple and straightforward to solve integer-order differential equ...
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
in this paper we propose a relatively new semi-analytical technique to approximate the solution ofnonlinear multi-order fractional differential equations (fdes). we present some results concerning to the uniqueness of solution of nonlinear multi-order fdes and discuss the existence of solution for nonlinear multi-order fdes in reproducing kernel hilbert space (rkhs). we further give an error an...
This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید