نتایج جستجو برای: stochastic gradient descent learning

تعداد نتایج: 840759  

2016
Hiroaki Hayashi

In this paper we propose a simple and efficient method for improving stochastic gradient descent methods by using feedback from the objective function. The method tracks the relative changes in the objective function with a running average, and uses it to adaptively tune the learning rate in stochastic gradient descent. We specifically apply this idea to modify Adam, a popular algorithm for tra...

2018
Yao Zhang Andrew M. Saxe Madhu S. Advani Alpha A. Lee

Finding parameters that minimise a loss function is at the core of many machine learning methods. The Stochastic Gradient Descent algorithm is widely used and delivers state of the art results for many problems. Nonetheless, Stochastic Gradient Descent typically cannot find the global minimum, thus its empirical effectiveness is hitherto mysterious. We derive a correspondence between parameter ...

Journal: :CoRR 2016
Ohad Shamir

Stochastic gradient methods for machine learning and optimization problems are usually analyzed assuming data points are sampled with replacement. In practice, however, sampling without replacement is very common, easier to implement in many cases, and often performs better. In this paper, we provide competitive convergence guarantees for without-replacement sampling, under various scenarios, f...

Journal: :CoRR 2016
Jayanth Koushik Hiroaki Hayashi

In this paper we propose a simple and efficient method for improving stochastic gradient descent methods by using feedback from the objective function. The method tracks the relative changes in the objective function with a running average, and uses it to adaptively tune the learning rate in stochastic gradient descent. We specifically apply this idea to modify Adam, a popular algorithm for tra...

Journal: :Information and Inference: A Journal of the IMA 2019

2012
Benjamin Recht Christopher Ré

Randomized algorithms that base iteration-level decisions on samples from some pool are ubiquitous in machine learning and optimization. Examples include stochastic gradient descent and randomized coordinate descent. This paper makes progress at theoretically evaluating the difference in performance between sampling withand without-replacement in such algorithms. Focusing on least means squares...

Journal: :CoRR 2017
Fanhua Shang Yuanyuan Liu James Cheng Jiacheng Zhuo

Recently, research on accelerated stochastic gradient descentmethods (e.g., SVRG) has made exciting progress (e.g., lin-ear convergence for strongly convex problems). However,the best-known methods (e.g., Katyusha) requires at leasttwo auxiliary variables and two momentum parameters. Inthis paper, we propose a fast stochastic variance reductiongradient (FSVRG) method...

2015
Stephan Mandt Matthew D. Hoffman David M. Blei

Stochastic Gradient Descent (SGD) is an important algorithm in machine learning. With constant learning rates, it is a stochastic process that reaches a stationary distribution. We revisit an analysis of SGD in terms of stochastic differential equations in the limit of small constant gradient steps. This limit, which we feel is not appreciated in the machine learning community, allows us to app...

Journal: :East Asian Journal on Applied Mathematics 2020

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید