نتایج جستجو برای: systems of integral equations
تعداد نتایج: 21304684 فیلتر نتایج به سال:
in this paper, we use the continuous legendre wavelets on the interval [0,1] constructed by razzaghi m. and yousefi s. [6] to solve the linear second kind integral equations. we use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. then we reduced the integral equation to the solution of linear algebraic ...
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
One of the numerical methods for solving linear Volterra integral equations is block-by-block method, which is explained in [L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, 1985; L.M. Delves, J. Walsh, Numerical Solution of Integral Equations, Oxford University Press, 1974] and [P.K. Kyte, P. Puri, Computational Methods for Linear Integral Eq...
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
Fuzzy integral equations have a major role in the mathematics and applications.In this paper, general fuzzy integral equations with nonlinear fuzzykernels are introduced. The existence and uniqueness of their solutions areapproved and an upper bound for them are determined. Finally an algorithmis drawn to show theorems better.
Partial differential equations provide mathematical models of many important problems in the physical sciences and engineering. This book treats one class of such equations, concentrating on methods involving the use of surface potentials. It provides the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains. Included are cha...
in this paper, we conduct a comparative study between the homotopy perturbation method (hpm) and adomian’s decomposition method (adm) for analytic treatment of nonlinear volterra integral equations, and we show that the hpm with a specific convex homotopy is equivalent to the adm for these type of equations.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید