نتایج جستجو برای: t0 1μ day

تعداد نتایج: 344784  

2017
Andy Zucker

We provide an ultrafilter proof of the 2-dimensional Halpern–Läuchli Theorem in the following sense. If T0 and T1 are trees and T0 ⊗ T1 denotes their level product, we exhibit an ultrafilter U ∈ β(T0 ⊗ T1) so that every A ∈ U contains a subset of the form S0 ⊗ S1 for suitable strong subtrees of T0 and T1. We then discuss obstacles to extending our method of proof to higher dimensions.

2010
JinRong Wang W. Wei YanLong Yang

and Applied Analysis 3 input signal v t v1 t , v2 t , . . . , vq t T of the pulse-width sampler satisfy the following dynamic relation: ui t ⎧ ⎨ ⎩ signαni , nT0 ≤ t < n |αni | T0, i 1, 2, . . . , q; 0, n |αni | T0 ≤ t < n 1 T0, n 0, 1, . . . , 1.4 αni ⎧ ⎨ ⎩ vi nT0 , |vi nT0 | ≤ 1, i 1, 2, . . . , q; signvi nT0 , |vi nT0 | ≥ 1, n 0, 1, . . . , 1.5 where T0 is called the sampling period of the pu...

Journal: :SIAM J. Matrix Analysis Applications 2007
Albrecht Böttcher Jani Virtanen

we call a the symbol of the sequence {Tn} and denote Tn by Tn(a). The case where a is in L∞(T) is easy, since then ‖Tn(a)‖ → ‖a‖∞ as n → ∞. Things are more complicated for a ∈ L(T) \L∞(T). We here focus our attention on so-called FisherHartwig symbols with a single singularity, that is, we consider functions a of the form a(t) = |t− t0|φβ,t0(t)b(t) (t ∈ T) where t0 ∈ T, α is a complex number su...

2001
YUICHI KITAMURA B. S. LALLI

Conditions are found upon satisfaction of which the differential equation x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0 has solutions which are asymptotically equivalent to the solutions of the equation x(n)(t)− λx(n)(t− σ) = 0. § 0. Introduction We consider the neutral functional differential equation x(n)(t)− λx(n)(t− σ) + f(t, x(g(t))) = 0 (A) under the assumptions that (i) n ≥ 1 is an integer; λ...

Journal: :Mathematical and Computer Modelling 2006
Satoshi Tanaka

The nonlinear neutral differential equation dn dtn [x(t)+ h(t)x(τ (t))] + f (t, x(g(t))) = q(t), (1) is considered under the following conditions: n ∈ N; h ∈ C[t0,∞); τ ∈ C[t0,∞) is strictly increasing, limt→∞ τ(t) = ∞ and τ(t) < t for t ≥ t0; g ∈ C[t0,∞) and limt→∞ g(t) = ∞; f ∈ C([t0,∞) × R); q ∈ C[t0,∞). It is shown that if f is small enough in some sense, Eq. (1) has a solution x(t) which b...

2009
Zaidong Zhan W. Wei Ülle Kotta

and Applied Analysis 3 Remark 2.2. For each t0 ∈ T \ {maxT}, the single-point set {t0} is Δ-measurable, and its Δmeasure is given by μΔ {t0} σ t0 − t0 μ t0 . 2.2 Obviously, E1 ⊂ A does not have any right-scattered points. For a set E ⊂ T, define the Lebesgue Δ-integral of f over E by ∫ Ef t Δt and let f ∈ LT E,R see 8 . Lemma 2.3 see 8 . Let f : a, b T → R. f̃ : a, b → R is the extension of f to...

Journal: :Journal of Guidance Control and Dynamics 2023

Open AccessEngineering NotesState Transition Tensors for Continuous-Thrust Control of Three-Body Relative MotionJackson Kulik, William Clark and Dmitry SavranskyJackson KulikCornell University, Ithaca, New York 14850*Ph.D. Candidate, Center Applied Mathematics; .Search more papers by this author, ClarkCornell 14850†Visiting Assistant Professor, Mathematics.Search author SavranskyCornell 14850‡A...

2016
Youssef N. Raffoul

(2) x∆(t) = G(t, x(s); 0 ≤ s ≤ t) := G(t, x(·)) on a time scale T that is unbounded above with 0 ∈ T, where x ∈ R andG : [0,∞)T× R 7→ R is a is rd-continuous function in t and x with G(t, 0) = 0. Throughout this paper, for each continuous function φ : [0, t0]T 7→ R there exists at least one continuous function x(t) = x(t, t0, φ) on an interval [t0, a]T such that it satisfies (2) for t ∈ [t0, a]...

2003

The terminal set M is a closed subset of Rn+1. The admissible control set U is assumed to be the set of piecewise continuous function on [t0, t1]. The performance function J is assumed to be C1. The function V (·, ·) is called the value function and we shall use the convention V (t0, x0) = ∞ if the control problem above admits no feasible solution. We will denote by U(x0, t0), the set of feasib...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393

a و b را u ? مدولهای باناخ و m را یک a ? u ? مدول باناخ چپ و یک b ? u ? مدول باناخ راست در نظر بگیرید. در این پایان نامه، میانگینپذیری مدولی، n ?میانگینپذیری مدولی ضعیف و آرنز منظمی } =: t ? مدول ) ??? ? ? ??? = t ( به عنوان یک {u ? ? | ??? a m b ??? مدولی از جبر باناخ مثلثی را بررسی میکنیم. این نتایج را به کار میبریم که ثابت کنیم برای نیمگروه معکوس s با زیرنیمگروه e ? t 0 = ???...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید