نتایج جستجو برای: tddft
تعداد نتایج: 765 فیلتر نتایج به سال:
Using a time-dependent density-functional-theory (TDDFT) method, we calculated the high-harmonic generation (HHG) spectra of N2 in 800and 1300-nm intense lasers. The calculations reproduce the experimentally observed minimum near 40 eV and the shift of the minimum due to interference of different molecular orbitals. They also support the proposed shape resonance near 30 eV. The TDDFT method all...
Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recen...
The first few excited states of the 11-cis-retinal (PSB11) chromophore have been studied at the coupled-cluster approximative singles and doubles (CC2) level using triple-zeta quality basis sets augmented with double sets of polarisation functions. The two lowest vertical excitation energies of 2.14 and 3.21 eV are in good agreement with recently reported experimental values of 2.03 and 3.18 eV...
An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. In this scheme, the density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissi...
In this letter, we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) Å, larger than the values obtained by DFT (PBE, B3LYP, and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on...
A quantum mechanics/molecular mechanics (QM/MM) type of scheme is employed to calculate the solvent-induced shifts of molecular electronic excitations. The effective fragment potential (EFP) method was used for the classical potential. Since EFP has a density dependent functional form, in contrast with most other MM potentials, time-dependent density functional theory (TDDFT) has been modified ...
Time-dependent density functional theory (TDDFT) in its current adiabatic implementations exhibits three remarkable failures: (a) completely wrong behavior of the excited state surface along a bond-breaking coordinate; (b) lack of doubly excited configurations; (c) much too low charge transfer excitation energies. These TDDFT failure cases are all strikingly exhibited by prototype two-electron ...
Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method....
We report a combined spectro-photometric and computational investigation of the acid-base equilibria of the N3 solar cell sensitizer [Ru(dcbpyH(2))(2)(NCS)(2)] (dcbpyH(2) = 4,4'-dicarboxyl-2,2' bipyridine) in aqueous/ethanol solutions. The absorption spectra of N3 recorded at various pH values were analyzed by Single Value Decomposition techniques, followed by Global Fitting procedures, allowin...
We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We sh...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید