نتایج جستجو برای: zno nanoparticle co
تعداد نتایج: 380438 فیلتر نتایج به سال:
In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase...
The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to dama...
Objective(s): The mesenchymal stem cells (MSCs) have been introduced as appropriate cells for tissue engineering and medical applications. Some studies have shown that topography of materials especially physical surface characteristics and particles size could enhance adhesion and proliferation of osteoblasts. In the present research, we studied the distinction effect of 30 and 60 μg/ml of zinc...
A detailed study has been presented of optical, electrical, structural and magnetic properties of Zn1–xCoxO (0 < x ≤ 0.25) films co-doped with 1 at. % of Al. The polycrystalline films have been synthesized on Corning glass 7059 substrates by the sol-gel technique using spin coating. Highly preferential c-axis oriented films have been obtained at the annealing temperature of 600 °C. The lattice ...
Nanoparticles are increasingly being recognized for their potential utility in biological applications including nanomedicine. Here we examine the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells ( approximately 28-35x) co...
ZnO is one of the most promising materials since it has a high mechanical and thermal stability, and wide band gap (3.37 eV). Meanwhile, doping with selective elements offers an effective method to enhance and control the electrical and optical properties of ZnO nanostructures, which is crucial for its practical applications. Mg-doped ZnO have considerable interests owing to their unique optica...
Title of Dissertation: DEVELOPMENT OF SELF-ASSEMBLED ZnO NANOSTRUCTURES IN DIBLOCK COPOLYMERS ON LARGE AREA Si WAFERS AND GAS SENSOR APPLICATIONS Hasina Afroz Ali, Doctor of Philosophy, 2008 Dissertation Directed By: Agis A. Iliadis Department of Electrical and Computer Engineering ZnO nanoparticles with improved optical properties and increased surface areas have the potential for advanced opt...
To remedy the problems caused by the introduction of an additional electron mediator and realize signal amplification, a new strategy has been presented to construct an electrochemical aptasensor for thrombin detection based on the cascade electrocatalysis of alkaline phosphatase (ALP) and Pt nanoparticle (PtNP)-functionalized ZnO nanoflowers.
We confirmed the influence of ZnO nanoparticle size and residual water on performance of all inorganic perovskite solar cells. By decreasing the size of the ZnO nanoparticles, the short-circuit current density (Jsc) and open circuit photovoltage (Voc) values are increased and the conversion efficiency is improved. Although the Voc value is not affected by the influence of residual water in the ...
We report a direct precipitation method for mass production of ZnO microflowers (MFs) containing hierarchical structures. The ZnO MFs are constructed by interlaced single crystalline and porous nanosheets which are ideal photoanode material for dye-sensitized solar cells (DSCs) because the MFs can largely improve the energy harvesting performance and the efficiency of DSCs. Compared with other ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید