The following sharpening of Turán’s theorem is proved. Let Tn,p denote the complete p– partite graph of order n having the maximum number of edges. If G is an n-vertex Kp+1-free graph with e(Tn,p) − t edges then there exists an (at most) p-chromatic subgraph H0 such that e(H0) ≥ e(G)− t. Using this result we present a concise, contemporary proof (i.e., one using Szemerédi’s regularity lemma) fo...