نتایج جستجو برای: cauchy rassias stability

تعداد نتایج: 308801  

Journal: :international journal of nonlinear analysis and applications 2010
n. ghobadipour

a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

Journal: :Journal of Inequalities and Applications 2005

2005
DORIAN POPA

Problem 1.1. Given a metric group (G,·,d), a positive number ε, and a mapping f : G→ G which satisfies the inequality d( f (xy), f (x) f (y)) ≤ ε for all x, y ∈ G, do there exist an automorphism a of G and a constant δ depending only on G such that d(a(x), f (x)) ≤ δ for all x ∈G? If the answer to this question is affirmative, we say that the equation a(xy) = a(x)a(y) is stable. A first answer ...

Journal: :Mathematics 2022

In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system hyperbolic partial differential equations using Gronwall’s lemma Perov’s theorem.

In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.

In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.

2013
Manoj Kumar Renu Chugh

In this paper, using the direct method we study the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equations (2 ) ( ) 6 ( )     f x y f x y f x and (3 ) ( ) 16 ( )     f x y f x y f x for the mapping f from normed linear space in to 2-Banach spaces.

2002
JIAN WANG

We study the Hyers-Ulam stability theory of a four-variate Jensen-type functional equation by considering the approximate remainder φ and obtain the corresponding error formulas. We bring to light the close relation between the β-homogeneity of the norm on F *-spaces and the approximate remainder φ, where we allow p, q, r , and s to be different in their Hyers-Ulam-Rassias stability.

2008
M. Eshaghi Gordji

In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation f(2x+ y) + f(2x− y) = 4(f(x+ y) + f(x− y))− 3 7 (f(2y)− 2f(y)) + 2f(2x) − 8f(x).

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید