نتایج جستجو برای: compact base manifolds
تعداد نتایج: 373396 فیلتر نتایج به سال:
G2-monopoles are solutions to gauge theoretical equations onG2-manifolds. If the G2-manifolds under consideration are compact, then any irreducible G2-monopole must have singularities. It is then important to understand which kind of singularities G2-monopoles can have. We give examples (in the noncompact case) of non-Abelian monopoles with Dirac type singularities, and examples of monopoles wh...
We show the non-vanishing of cohomology groups of sufficiently small congruence lattices in SL(1, D), where D is a quaternion division algebras defined over a number field E contained inside a solvable extension of a totally real number field. As a corollary, we obtain new examples of compact, arithmetic, hyperbolic three manifolds, with non-torsion first homology group, confirming a conjecture...
The signature of the Poincaré duality of compact topological manifolds with local system of coefficients can be described as a natural invariant of nondegenerate symmetric quadratic forms defined on a category of infinite dimensional linear spaces. The objects of this category are linear spaces of the form W = V ⊕ V ∗ where V is abstarct linear space with countable base. The space W is consider...
Using D2-brane probes, we study various properties of M-theory on singular, non-compact manifolds of G2 and Spin(7) holonomy. We derive mirror pairs of N = 1 supersymmetric three-dimensional gauge theories, and apply this technique to realize exceptional holonomy manifolds as both Coulomb and Higgs branches of the D2-brane world-volume theory. We derive a “G2 quotient construction” of non-compa...
In [EE1] and [EE2] we presented the solution to the index problem for a natural class of hypoelliptic differential operators on compact contact manifolds. The methods developed to deal with that problem have wider applicability to the index theory of hypoelliptic Fredholm operators. As an example of the power of the proof techniques we present here a new proof of a little known index theorem of...
The starting point of this work is the Bochner theorem on harmonics 1-forms stated at 1946. We show that many results on minimal foliations of codimension one and two on compact pseudo-Riemannian manifolds are at the origin of this theorem. We also prove the non existence of minimal Riemannian foliations of codimension one defined by a 1-form with finite global norm on complete non compact Riem...
We consider a connected symplectic manifold M acted on by a connected Lie group G in a Hamiltonian fashion. If G is compact, we prove give an Equivalence Theorem for the symplectic manifolds whose squared moment map ‖ μ ‖ is constant. This result works also in the almost-Kähler setting. Then we study the case when G is a non compact Lie group acting properly on M and we prove a splitting result...
In this article we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obs...
In N(k)-contact metric manifolds and/or (k, μ)-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with V pointwise collinear with the structure vector field ξ are studied. Mathematics Subject Classification: 53C15, 53C25, 53A30.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید