نتایج جستجو برای: complete probabilistic metric space
تعداد نتایج: 952508 فیلتر نتایج به سال:
We generalize the construction of the formal ball model for metric spaces due to A. Edalat and R. Heckmann to obtain computational models for separated Q-categories. We fully describe (a) Yoneda complete and (b) continuous Yoneda complete Q-categories via their formal ball models. Our results yield solutions to two open problems in the theory of quasi-metric spaces: we show that (a) a quasi-met...
A resistance network is a connected graph (G, c). The conductance function cxy weights the edges, which are then interpreted as conductors of possibly varying strengths. The Dirichlet energy form E produces a Hilbert space structure (which we call the energy space HE) on the space of functions of finite energy. We use the reproducing kernel {vx} constructed in [JP09b] to analyze the effective r...
In this article we consider the possible sets of distances in Polish metric spaces. By a Polish metric space we mean a pair (X, d), where X is a Polish space (a separable, completely-metrizable space) and d is a complete, compatible metric for X. We will consider two aspects. First, we will characterize which sets of reals can be the set of distances in a Polish metric space. We will also obtai...
Generalized metric spaces are a common generalization of preorders and ordinary metric spaces. Every generalized metric space can be isometrically embedded in a complete function space by means of a metric version of the categorical Yoneda embedding. This simple fact gives naturally rise to: 1. a topology for generalized metric spaces which for arbitrary preorders corresponds to the Alexandroo ...
in the present paper, we introduces the notion of integral type contractive mapping with respect to ordered s-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered s-metric space. moreover, we give an example to support our main result.
in this paper, we introduce the (g-$psi$) contraction in a metric space by using a graph.let $f,t$ be two multivalued mappings on $x.$ among other things, we obtain a common fixedpoint of the mappings $f,t$ in the metric space $x$ endowed with a graph $g.$
In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We deene operational notions of preorder and equivalence as prob-abilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing category-theoretic techniques for solv...
We show that every complete metric space is homeomorphic to the locus of zeros of an entire analytic map from a complex Hilbert space to a complex Banach space. As a corollary, every separable complete metric space is homeomorphic to the locus of zeros of an entire analytic map between two complex Hilbert spaces. §1. Douady had observed [8] that every compact metric space is homeomorphic to the...
in a fuzzy metric space (x;m; *), where * is a continuous t-norm,a locally fuzzy contraction mapping is de ned. it is proved that any locally fuzzy contraction mapping is a global fuzzy contractive. also, if f satis es the locally fuzzy contractivity condition then it satis es the global fuzzy contrac-tivity condition.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید