نتایج جستجو برای: edge wiener index
تعداد نتایج: 511127 فیلتر نتایج به سال:
Molecules and molecular compounds are often modeled by molecular graphs. One of the most widely known topological descriptor [6, 9] is the Wiener index named after chemist Harold Wiener [13]. The Wiener index of a graph G(V, E) is defined as W (G) = ∑ u,v∈V d(u, v), where d(u, v) is the distance between vertices u and v (minimum number of edges between u and v). A majority of the chemical appli...
Let Sz(G), Sz(G) and W (G) be the Szeged index, revised Szeged index and Wiener index of a graph G. In this paper, the graphs with the fourth, fifth, sixth and seventh largest Wiener indices among all unicyclic graphs of order n > 10 are characterized; and the graphs with the first, second, third, and fourth largest Wiener indices among all bicyclic graphs are identified. Based on these results...
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.
Abstract. A subgraph H of a graph G is gated if for every x ∈ V (G) there exists a vertex u in H such that dG(x, v) = dG(x, u) + dG(u, v) for any v ∈ V (H). The gated amalgam of graphs G1 and G2 is obtained from G1 and G2 by identifying their isomorphic gated subgraphs H1 and H2. Two theorems on the Wiener index of gated amalgams are proved. Several known results on the Wiener index of (chemica...
Introduced in 1947, the Wiener index W (T ) = ∑ {u,v}⊆V (T ) d(u, v) is one of the most thoroughly studied chemical indices. The extremal structures (in particular, trees with various constraints) that maximize or minimize the Wiener index have been extensively investigated. The Harary index H(T ) = ∑ {u,v}⊆V (T ) 1 d(u,v) , introduced in 1993, can be considered as the “reciprocal analogue” of ...
sufficient conditions on the zeroth-order general randic index for maximally edge-connected digraphs
let $d$ be a digraph with vertex set $v(d)$. for vertex $vin v(d)$, the degree of $v$,denoted by $d(v)$, is defined as the minimum value if its out-degree and its in-degree.now let $d$ be a digraph with minimum degree $deltage 1$ and edge-connectivity$lambda$. if $alpha$ is real number, then the zeroth-order general randic index is definedby $sum_{xin v(d)}(d(x))^{alpha}$. a digraph is maximall...
The Wiener index of a connected graph G, denoted by W (G), is defined as 12 ∑ u,v∈V (G) dG(u, v). Similarly, the hyper-Wiener index of a connected graph G, denoted by WW (G), is defined as 1 2W (G) + 1 4 ∑ u,v∈V (G) dG(u, v). The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, ...
Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, λ a real number, and Wλ(G) = ∑ k≥1 d(G, k)kλ. Wλ(G) is called the Wiener-type invariant of G associated to real number λ. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyperWiener index and Tratc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید