Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions $S^{1}$. Define hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is element $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that rescaled $K_n(\mathcal{Q}_n;x,y):= \frac{\...